1 Subobject

In a category \(\cC\), a subobject of an object \(C\) is a monomorphism \(a: A \mono C\).

For a category \(\cC\), the category of subobjects and inclusions \(\Sub_\cC(C)\) of an object \(C\) is the full subcategory of the slice category \(\cC \comma C\) whose objects are monomorphisms.

/assets/diagrams/subobject_inclusion.svg

preorder of subobjects: \(a \leq b := \exists f: A \to B. a = b \compL f\).

\(\id_C\) is a terminal object (top) in the subobject category \(\Sub_\cC(C)\).

1.1 Subobject functor

A \(\cC\)-morphism \(f: C' \to C\) induces a base change functor \(f^*: \cC \comma C \to \cC \comma C'\) via pullback along \(f\):

\[\begin{aligned} \begin{array}{cccc} f^*: & \cC \comma C & \to & \cC \comma C' \\ & A \xto{a} C & \mapsto & \Pull(f, a) \xto{f^*a} C' \\ & A \xto{m} B & \mapsto & \Pull(f, a) \xto{f^*m} \Pull(f, b) \end{array} \end{aligned}\]

/assets/diagrams/base_change.svg

slice functor \(\cC \comma (-): \cC\op \to \cCat\):

\[\begin{aligned} \begin{array}{cccc} \cC \comma (-): & \cC\op & \to & \cCat \\ & C & \mapsto & \cC \comma C \\ & C \xto{f\op} C' & \mapsto & f^*: \cC \comma C \to \cC \comma C' \end{array} \end{aligned}\]

subobject functor \(\Sub_\cC: \cC\op \to \cCat\):

\[\begin{aligned} \begin{array}{cccc} \Sub_\cC: & \cC\op & \to & \cCat \\ & C & \mapsto & \Sub_\cC(C) \\ & C \xto{f\op} C' & \mapsto & f^*: \Sub_\cC(C) \to \Sub_\cC(C') \end{array} \end{aligned}\]

For a category \(\cC\), the category of subobjects and pullbacks is the subcategory of the arrow category \(\cArr(\cC)\) whose objects are monomorphisms and morphisms are pullbacks.

/assets/diagrams/subobject_pullback.svg

1.2 Subobject classifier

In a finitely complete category \(\cC\), a subobject classifier is a terminal object \(\ltru: 1 \mono \Omega\) of the category of subobjects and pullbacks.

The domain of a subobject classifier \(\ltru: 1 \mono \Omega\) is a terminal object \(1\) in \(\cC\).

For any object \(C\) in \(\cC\), the identity morphism \(\id_C\) is a monomorphism. If \(t: T \mono S\) is a subobject classifier, then for any object \(C\), there exists a morphism \(e_C: C \to T\), which is unique because it forms a pullback with \(\id_C\). Thus, \(T\) is a terminal object in \(\cC\).

/assets/diagrams/subobject_terminal.svg

The composition \(\ltru \compL e_C\) is abbreviated as \(\ltru_C\).

In a finitely complete category \(\cC\), a subobject classifier is a universal subobject \(\ltru: 1 \mono \Omega\): for every subobject \(a: A \mono C\), there exists a unique morphism \(\chi_a: C \to \Omega\) such that \(a\) is a pullback of \(\ltru\) along \(\chi_a\).

\(\chi_a\) is called the classifying morphism of the subobject \(a\).

/assets/diagrams/subobject_classifier.svg

An elementary topos is a finitely complete and cartesian closed category with a subobject classifier.

In an elementary topos, all monomorphisms are regular: \(a: A \mono C\) is an equalizer of \(\ltru_C, \chi_a: C \to \Omega\).

\[\begin{aligned} \begin{array}{cccc} \Hom_\cC(-, \Omega): & \cC\op & \to & \cSet \\ & C & \mapsto & \Hom_\cC(C, \Omega) \\ & C \xto{f\op} C' & \mapsto & \Hom_\cC(f, \Omega): \Hom_\cC(C, \Omega) \xto{(-) \compL f} \Hom_\cC(C', \Omega) \end{array} \end{aligned}\]

\[\Hom_\cC(-, \Omega) \iso \Sub_\cC\]

/assets/diagrams/subobject_functor.svg

1.3 Dependent sum

A \(\cC\)-morphism \(f: C' \to C\) induces a dependent sum functor \(\Sigma_f: \cC \comma C' \to \cC \comma C\) via postcomposition with \(f\):

\[\begin{aligned} \begin{array}{cccc} \Sigma_f: & \cC \comma C' & \to & \cC \comma C \\ & A \xto{a} C' & \mapsto & A \xto{f \compL a} C \\ & A \xto{m} B & \mapsto & A \xto{m} B \end{array} \end{aligned}\]

\[\Sigma_f \adj f^*\]

\[\begin{aligned} \begin{array}{ccc} \Hom_{\cC \comma C}(\Sigma_f a, b) & \iso & \Hom_{\cC \comma C'}(a, f^*b) \\ m: A \to B & & n: A \to B^* \end{array} \end{aligned}\]

/assets/diagrams/dependent_sum.svg

\[f \times_C (-): \cC \comma C \xto{f^*} \cC \comma C' \xto{\Sigma_f} \cC \comma C\]

1.4 Dependent product

For a \(\cC\)-morphism \(f: C' \to C\), the dependent product functor \(\Pi_f: \cC \comma C' \to \cC \comma C\) is the right adjoint functor to \(f^*\).

\[f^* \adj \Pi_f\]

\[\Hom_{\cC \comma C'}(f^*a, b) \iso \Hom_{\cC \comma C}(a, \Pi_f b)\]

\[[f, -]_C: \cC \comma C \xto{f^*} \cC \comma C' \xto{\Pi_f} \cC \comma C\]

2 Connective

2.1 Conjunction

The conjunction \(\lcon: \Omega \times \Omega \to \Omega\) is the classifying morphism of the paring \(\angles{\ltru, \ltru}: 1 \mono \Omega \times \Omega\).

/assets/diagrams/conjunction.svg

The conjunction \(\lcon \compL \angles{\chi_1, \chi_2}\) is also written as \(\chi_1 \lcon \chi_2\).

If \(\cC\) is finitely complete, \(\Sub_\cC(C)\) is a meet-semilattice.

Let \(a_1: A_1 \mono C\), \(a_2: A_2 \mono C\), and \(a: A \mono C\) be the subobjects of \(C\) classified by \(\chi_1\), \(\chi_2\), and \(\chi_1 \lcon \chi_2: C \to \Omega\).

\[\begin{aligned} & b \leq_C a \\ \equiv& \lcon \compL \angles{\chi_1, \chi_2} \compL b = \ltru_B \\ \equiv& \lcon \compL \angles{\chi_1 \compL b, \chi_2 \compL b} = \ltru_B \\ \equiv& \angles{\chi_1 \compL b, \chi_2 \compL b} = \angles{\ltru, \ltru} \compL e_B \\ \equiv& \angles{\chi_1 \compL b, \chi_2 \compL b} = \angles{\ltru_B, \ltru_B} \\ \equiv& \chi_1 \compL b = \ltru_B, \chi_2 \compL b = \ltru_B \\ \equiv& b \leq_C a_1, b \leq_C a_2 \end{aligned}\]

2.2 Equality

The equality predicate \(=_C: C \times C \to \Omega\) is the classifying morphism of the diagonal \(\Delta_C: C \to C \times C\).

/assets/diagrams/equality.svg

equality \(\leqv: \Omega \times \Omega \to \Omega := =_\Omega\)

2.3 Implication

implication \(\limp: \Omega \times \Omega \to \Omega := \leqv \compL \angles{\lcon, p_1}\)

3 Power object

In a category \(\cC\), a relation over objects \(A\) and \(B\) is a monomorphism \(r: R \mono A \times B\).

In a finitely complete category \(\cC\), a power object of an object \(A\) is a universal relation \(\epsilon: \in_A \mono A \times PA\): for every relation \(r: R \mono A \times B\), there exists a unique morphism \(\chi_r: B \to PA\) such that \(r\) is a pullback of \(\epsilon\) along \(\id_A \times \chi_r\).

\(\chi_r\) is called the classifying morphism of the relation \(r\).

/assets/diagrams/power_object.svg

\[P1 \iso \Omega\]

\[PA \iso \Omega^A\]

\[\Sub_\cC(A \times -) \iso \Hom_\cC(-, \Omega^A) \iso \Hom_\cC(A \times -, \Omega)\]

3.1 Power object functor

contravariant power object functor \(P: \cC\op \to \cC\):

\[\begin{aligned} \begin{array}{cccc} P: & \cC\op & \to & \cC \\ & A & \mapsto & PA \\ & B \xto{f\op} A & \mapsto & PB \xto{f\inv} PA \end{array} \end{aligned}\]

inverse image

covariant power object functor \(P: \cC \to \cC\):

\[\begin{aligned} \begin{array}{cccc} P: & \cC & \to & \cC \\ & A & \mapsto & PA \\ & A \xto{f} B & \mapsto & PA \xto{Pf} PB \end{array} \end{aligned}\]

direct image

4 Quantifier

4.1 Universal quantifier

\(\forall_A: \Omega^A \to \Omega\)

\(\Hom_\cC(-, \forall_A): \Hom(-, \Omega^A) \iso \Hom(A \times -, \Omega) \nat \Hom(-, \Omega)\)

\(\forall_A: \Sub_\cC(A \times -) \nat \Sub_\cC\)

\(\forall_A: \Sub_\cC(A \times B) \to \Sub_\cC(B)\) right adjoint to \({p_B}^*: \Sub_\cC(B) \to \Sub_\cC(A \times B)\)

\(\Pi_{p_B}: \cC \comma (A \times B) \to \cC \comma B\)

4.2 Existential quantifier

\(\exists_A: \Omega^A \to \Omega\)

\(\Hom_\cC(-, \exists_A): \Hom(-, \Omega^A) \iso \Hom(A \times -, \Omega) \nat \Hom(-, \Omega)\)

\(\exists_A: \Sub_\cC(A \times -) \nat \Sub_\cC\)

\(\exists_A: \Sub_\cC(A \times B) \to \Sub_\cC(B)\) left adjoint to \({p_B}^*: \Sub_\cC(B) \to \Sub_\cC(A \times B)\)

\(\Sigma_{p_B}: \cC \comma (A \times B) \to \cC \comma B\)