An enriched category is a category with generalized morphisms.

1 Enriched category

A category C=(Obj,Hom,,id) enriched in a monoidal category (V,,I,α,λ,ρ) (V-enriched category) consists of

  • a collection of objects Obj
  • a hom-object Hom(A,B)ObjV between objects
  • a composition morphism A,B,C:Hom(B,C)Hom(A,B)Hom(A,C) for each triple of objects
  • an identity element idA:IHom(A,A) for each object

subject to

  • associativity: (id)α=(id)
  • identity: (idBid)=λ and (ididA)=ρ
/assets/diagrams/enriched_category_associativity.svg
/assets/diagrams/enriched_category_identity.svg

2 Enriched functor

For V-enriched categories C and D, a V-enriched functor F:CD consists of

  • a function sending C-objects to D-objects F:ObjCObjD:=AFA
  • a collection of V-morphisms indexed by pairs of C-objects FA,B:HomC(A,B)HomD(FA,FB)

in such a way that F preserves

  • composition: FA,CC=D(FB,CFA,B)
  • identity: FA,AidC:A=idD:FA
/assets/diagrams/enriched_functor_composition.svg
/assets/diagrams/enriched_functor_identity.svg

3 Enriched natural transformation

For V-enriched functors F,G:CD, a V-enriched natural transformation α:FG is a collection of V-morphisms indexed by C-objects αA:IHomD(FA,GA) that satisfies

  • naturality: D(αBFA,B)λ1=D(GA,BαA)ρ1
/assets/diagrams/enriched_natural_transformation_naturality.svg

VCat: 2-category of V-enriched categories, V-enriched functors, and V-enriched natural transformations

4 Construction

V-product category CD:

  • ObjCD:=ObjC×ObjD
  • HomCD((A,B),(A,B)):=HomC(A,A)HomD(B,B)ObjV

The unit of V-product is I:=({},I,,id).

A closed monoidal category is enriched over itself, but not vice versa.

V-bifunctor:

F:CDE(A,B)F(A,B)HomCD((A,B),(A,B))HomC(A,A)HomD(B,B)HomE(F(A,B),F(A,B))

5 Base change

A lax monoidal functor (F:VW,μ,η) induces a 2-functor F:VCatWCat between enriched categories, where

  • ObjFC:=ObjC
  • HomFC(A,B):=FHomC(A,B)ObjW
  • FC:A,B,C:=HomFC(B,C)HomFC(A,B)FHomC(B,C)FHomC(A,B)μF(HomC(B,C)HomC(A,B))FC:A,B,CFHomC(A,C)HomFC(A,C)
  • idFC:A:=IWηFIVFidC:AFHomC(A,A)=HomFC(A,A)

6 Examples

6.1 Category

6.1.1 Locally small category

  • (Set,×,{})
  • Hom(A,B)Set
  • :Hom(B,C)×Hom(A,B)Hom(A,C) (morphism composition)
  • idA:{}Hom(A,A) (identity morphism)
  • Set-functor: functor
  • Cat: small categories and functors

6.1.2 Strict 2-category

  • (Cat,×,1)
  • C(A,B)Cat (1-cells f,g:AB, 2-cells α:fg, and vertical composition)
  • C(B,C)×C(A,B)C(A,C) (horizontal composition)
  • 1C(A,A) (identity 1-cell idA and identity 2-cell ididA)
  • Cat-functor: 2-functor
  • CatCat?

6.2 Metric

6.2.1 Preorder

  • ({,},,,)
  • ab
  • (bc)(ab)(ac) (transitivity)
  • (aa) (reflexivity)
  • {,}-functor: monotone map (aCb)(FaDFb)
  • Pos: posets and monotones

6.2.2 Metric space

  • (Q,,,I) monoidal preorder
  • d(a,b)Q
  • d(b,c)d(a,b)d(a,c) (triangle inequality)
  • Id(a,a) (indiscernibility of identicals)
  • Q-functor: metric map dC(a,b)dD(Fa,Fb)
  • MetQ: Q-metric spaces and Q-metric maps

A Lawvere metric space is enriched in ([0,],,+,0).

The Hausdorff metric is a metric on the powerset (PA,dPA) induced by a metric on a set (A,dA).

dPA(X,Y):=xXyYdA(x,y)

6.2.3 Metric category

  • (MetQ,,I)

  • d[A,B]MetQ

  • d[B,C]d[A,B]d[A,C] (metric composition)

    d[B,C]d[A,B]((g,f),(g,f)):=d[B,C](g,g)d[A,B](f,f)d[A,C](gf,gf)

  • Id[A,A] (identity morphism)

    Id[{},{}](id{},id{})d[A,A](idA,idA)

assets/diagrams/metric_category.svg

d[A,D](bf,c)d[B,D](hg,b)d[A,C](a,gf)d[A,D](ha,c)

d[A,D](bf,c)d[A,D](hgf,bf)d[A,D](ha,hgf)d[A,D](ha,c)

d[A,C](a,gf)d[C,D](h,h)d[A,C](a,gf)d[A,D](ha,hgf)

d[B,D](hg,b)d[B,D](hg,b)d[A,B](f,f)d[A,D](hgf,bf)

d[B,D](hg,b)d[A,C](a,gf)d[A,D](c,ha)d[A,D](c,bf)

d[A,D](hgf,bf)d[A,D](ha,hgf)d[A,D](c,ha)d[A,D](c,bf)

d[A,C](a,gf)d[C,D](h,h)d[A,C](a,gf)d[A,D](ha,hgf)

d[B,D](hg,b)d[B,D](hg,b)d[A,B](f,f)d[A,D](hgf,bf)

The supremum metric is a metric on the function space (Hom(A,B),d[A,B]) induced by a metric on the codomain (B,dB):

d[A,B](f,g):=aAdB(fa,ga)

  • triangle inequality:

    d[A,B](g,h)d[A,B](f,g)=aAdB(ga,ha)aAdB(fa,ga)papaaA(dB(ga,ha)dB(fa,ga))fa,ga,haaAdB(fa,ha)=d[A,B](f,h)

  • indiscernibility of identicals:

    IidfaaAdB(fa,fa)=d[A,B](f,f)