An enriched category is a category with generalized morphisms.

1 Enriched category

A category \(\cC = (\Obj, \Hom, \compL, \id)\) enriched in a monoidal category \((\cV, \otimes, I, \alpha, \lambda, \rho)\) (\(\cV\)-enriched category) consists of

  • a collection of objects \(\Obj\)
  • a hom-object \(\Hom(A, B) \in \Obj_\cV\) between objects
  • a composition morphism \(\compL_{A, B, C}: \Hom(B, C) \otimes \Hom(A, B) \to \Hom(A, C)\) for each triple of objects
  • an identity element \(\id_A: I \to \Hom(A, A)\) for each object

subject to

  • associativity: \(\compL (\id \otimes \compL) \alpha = \compL (\compL \otimes \id)\)
  • identity: \(\compL (\id_B \otimes \id) = \lambda\) and \(\compL (\id \otimes \id_A) = \rho\)
/assets/diagrams/enriched_category_associativity.svg
/assets/diagrams/enriched_category_identity.svg

2 Enriched functor

For \(\cV\)-enriched categories \(\cC\) and \(\cD\), a \(\cV\)-enriched functor \(F: \cC \to \cD\) consists of

  • a function sending \(\cC\)-objects to \(\cD\)-objects \(F: \Obj_\cC \to \Obj_\cD:= A \mapsto FA\)
  • a collection of \(\cV\)-morphisms indexed by pairs of \(\cC\)-objects \(F_{A, B}: \Hom_\cC(A, B) \to \Hom_\cD(FA, FB)\)

in such a way that \(F\) preserves

  • composition: \(F_{A, C} \compL_\cC = \compL_\cD (F_{B, C} \otimes F_{A, B})\)
  • identity: \(F_{A, A} \id_{\cC:A} = \id_{\cD:FA}\)
/assets/diagrams/enriched_functor_composition.svg
/assets/diagrams/enriched_functor_identity.svg

3 Enriched natural transformation

For \(\cV\)-enriched functors \(F, G: \cC \to \cD\), a \(\cV\)-enriched natural transformation \(\alpha: F \nat G\) is a collection of \(\cV\)-morphisms indexed by \(\cC\)-objects \(\alpha_A: I \to \Hom_\cD(FA, GA)\) that satisfies

  • naturality: \(\compL_\cD (\alpha_B \otimes F_{A, B}) \lambda\inv = \compL_\cD (G_{A, B} \otimes \alpha_A) \rho\inv\)
/assets/diagrams/enriched_natural_transformation_naturality.svg

\(\cV\cCat\): 2-category of \(\cV\)-enriched categories, \(\cV\)-enriched functors, and \(\cV\)-enriched natural transformations

4 Construction

\(\cV\)-product category \(\cC \otimes \cD\):

  • \(\Obj_{\cC \otimes \cD} := \Obj_\cC \times \Obj_\cD\)
  • \(\Hom_{\cC \otimes \cD}((A, B), (A', B')) := \Hom_\cC(A, A') \otimes \Hom_\cD(B, B') \in \Obj_\cV\)

The unit of \(\cV\)-product is \(\cI := (\singleton, I, \compL, \id)\).

A closed monoidal category is enriched over itself, but not vice versa.

\(\cV\)-bifunctor:

\[\begin{aligned} \begin{array}{cccc} F: & \cC \otimes \cD & \to & \cE \\ & (A, B) & \mapsto & F(A, B) \\ & \substack{ \Hom_{\cC \otimes \cD}((A, B), (A', B')) \\ \Hom_\cC(A, A') \otimes \Hom_\cD(B, B') } & \mapsto & \Hom_\cE(F(A, B), F(A',B')) \end{array} \end{aligned}\]

5 Base change

A lax monoidal functor \((F: \cV \to \cW, \mu, \eta)\) induces a 2-functor \(F_*: \cV\cCat \to \cW\cCat\) between enriched categories, where

  • \(\Obj_{F_*\cC} := \Obj_\cC\)
  • \(\Hom_{F_*\cC}(A, B) := F \Hom_\cC(A, B) \in \Obj_\cW\)
  • \( \compL_{F_*\cC: A, B, C} := \substack{ \Hom_{F_*\cC}(B, C) \otimes \Hom_{F_*\cC}(A, B) \\ F \Hom_\cC(B, C) \otimes F \Hom_\cC(A, B) } \xto{\mu} F (\Hom_\cC(B, C) \otimes \Hom_\cC(A, B)) \xto{F \compL_{\cC: A, B, C}} \substack{ F \Hom_\cC(A, C) \\ \Hom_{F_*\cC}(A, C) } \)
  • \( \id_{F_* \cC: A} := I_\cW \xto{\eta} F I_\cV \xto{F \id_{\cC: A}} \substack{ F \Hom_\cC(A, A) \\ = \Hom_{F_* \cC}(A, A) } \)

6 Examples

6.1 Category

6.1.1 Locally small category

  • \((\cSet, \times, \singleton)\)
  • \(\Hom(A, B) \in \cSet\)
  • \(\compL: \Hom(B, C) \times \Hom(A, B) \to \Hom(A, C)\) (morphism composition)
  • \(\id_A: \singleton \to \Hom(A, A)\) (identity morphism)
  • \(\cSet\)-functor: functor
  • \(\cCat\): small categories and functors

6.1.2 Strict 2-category

  • \((\cCat, \times, \cOne)\)
  • \(\cC(A, B) \in \cCat\) (1-cells \(f, g: A \to B\), 2-cells \(\alpha: f \nat g\), and vertical composition)
  • \(\cC(B, C) \times \cC(A, B) \to \cC(A, C)\) (horizontal composition)
  • \(\cOne \to \cC(A, A)\) (identity 1-cell \(\id_A\) and identity 2-cell \(\id_{\id_A}\))
  • \(\cCat\)-functor: 2-functor
  • \(\cCat\cCat\)?

6.2 Metric

6.2.1 Preorder

  • \((\set{\lfal, \ltru}, \lfal \lproves \ltru, \lcon, \ltru)\)
  • \(a \leq b\)
  • \((b \leq c) \lcon (a \leq b) \lproves (a \leq c)\) (transitivity)
  • \(\ltru \limp (a \leq a)\) (reflexivity)
  • \(\set{\lfal, \ltru}\)-functor: monotone map \((a \leq_\cC b) \lproves (Fa \leq_\cD Fb)\)
  • \(\cPos\): posets and monotones

6.2.2 Metric space

  • \((\cQ, \geq, \otimes, I)\) monoidal preorder
  • \(d(a, b) \in \cQ\)
  • \(d(b, c) \otimes d(a, b) \geq d(a, c)\) (triangle inequality)
  • \(I \geq d(a, a)\) (indiscernibility of identicals)
  • \(\cQ\)-functor: metric map \(d_\cC(a, b) \geq d_\cD(Fa, Fb)\)
  • \(\cMet_\cQ\): \(\cQ\)-metric spaces and \(\cQ\)-metric maps

A Lawvere metric space is enriched in \(([0, \infty], \geq, +, 0)\).

The Hausdorff metric is a metric on the powerset \((PA, d_{PA})\) induced by a metric on a set \((A, d_A)\).

\[d_{PA}(X, Y) := \bigmeet_{x \in X} \bigjoin_{y \in Y} d_A(x, y)\]

6.2.3 Metric category

  • \((\cMet_\cQ, \otimes, \cI)\)

  • \(d_{[A, B]} \in \cMet_\cQ\)

  • \(d_{[B, C]} \otimes d_{[A, B]} \to d_{[A, C]}\) (metric composition)

    \[d_{[B, C]} \otimes d_{[A, B]}((g, f), (g', f')) := d_{[B, C]}(g, g') \otimes d_{[A, B]}(f, f') \geq d_{[A, C]}(g \compL f, g' \compL f')\]

  • \(\cI \to d_{[A, A]}\) (identity morphism)

    \[I \geq d_{[\singleton, \singleton]}(\id_\singleton, \id_\singleton) \geq d_{[A, A]}(\id_A, \id_A)\]

assets/diagrams/metric_category.svg

\[d_{[A, D]}(b \compL f, c) \otimes d_{[B, D]}(h \compL g, b) \otimes d_{[A, C]}(a, g \compL f) \geq d_{[A, D]}(h \compL a, c)\]

\[d_{[A, D]}(b \compL f, c) \otimes d_{[A, D]}(h \compL g \compL f, b \compL f) \otimes d_{[A, D]}(h \compL a, h \compL g \compL f) \geq d_{[A, D]}(h \compL a, c)\]

\[d_{[A, C]}(a, g \compL f) \geq d_{[C, D]}(h, h) \otimes d_{[A, C]}(a, g \compL f) \geq d_{[A, D]}(h \compL a, h \compL g \compL f)\]

\[d_{[B, D]}(h \compL g, b) \geq d_{[B, D]}(h \compL g, b) \otimes d_{[A, B]}(f, f) \geq d_{[A, D]}(h \compL g \compL f, b \compL f)\]

\[d_{[B, D]}(h \compL g, b) \otimes d_{[A, C]}(a, g \compL f) \otimes d_{[A, D]}(c, h \compL a) \geq d_{[A, D]}(c, b \compL f)\]

\[d_{[A, D]}(h \compL g \compL f, b \compL f) \otimes d_{[A, D]}(h \compL a, h \compL g \compL f) \otimes d_{[A, D]}(c, h \compL a) \geq d_{[A, D]}(c, b \compL f)\]

\[d_{[A, C]}(a, g \compL f) \geq d_{[C, D]}(h, h) \otimes d_{[A, C]}(a, g \compL f) \geq d_{[A, D]}(h \compL a, h \compL g \compL f)\]

\[d_{[B, D]}(h \compL g, b) \geq d_{[B, D]}(h \compL g, b) \otimes d_{[A, B]}(f, f) \geq d_{[A, D]}(h \compL g \compL f, b \compL f)\]

The supremum metric is a metric on the function space \((\Hom(A, B), d_{[A, B]})\) induced by a metric on the codomain \((B, d_B)\):

\[d_{[A, B]}(f, g) := \bigmeet_{a \in A} d_B(fa, ga)\]

  • triangle inequality:

    \[\begin{aligned} & d_{[A, B]}(g, h) \otimes d_{[A, B]}(f, g) \\ = & \bigmeet_{a \in A} d_B(ga, ha) \otimes \bigmeet_{a \in A} d_B(fa, ga) \overset{\angles{p_a \otimes p_a}}{\geq} \bigmeet_{a \in A} (d_B(ga, ha) \otimes d_B(fa, ga)) \overset{\bigmeet \compL_{fa, ga, ha}}{\geq} \bigmeet_{a \in A} d_B(fa, ha) \\ = & d_{[A, B]}(f, h) \end{aligned}\]

  • indiscernibility of identicals:

    \[I \overset{\angles{\id_{fa}}}{\geq} \bigmeet_{a \in A} d_B(fa, fa) = d_{[A, B]}(f, f)\]