Recursive Reward Aggregation

Yuting Tang Yivan Zhang Johannes Ackermann
Yu-die Zhang Soichiro Nishimori Masashi Sugiyama

2w UTokyo @grinzn

Reinforcement Learning Conference 2025

Inreinforcement learning, an agent obtains a sequence of rewards
as it takes actions in a dynamic environment.

We use the discounted sum to evaluate its performance.

SUILLL, [T17T27T37"'] =11+ YTo _l"')/27"3 IR

Why do we optimize the discounted sum of rewards?

Why do we optimize the discounted sum of rewards?

m Standard? Convenient? Mathematically elegant?

m Practical benefits? Higher, sooner rewards preferred

m Theoretical guarantees? Contraction — unique fixed point

m Reward hypothesis? If true, all preferences can be represented

But... does it always align with our requirements?

Reward shaping

Augmented state =gy,
Approximation =%

Conversion

Prad

Peak performance?

/' Average reward?
¥

—p Worst-case outcome?
= Bottleneck objective?

Q Risk-adjusted return?
Variance regularization?

Peak performance

/' Average reward
e

=y Worst-case outcome
—» Bottleneck objective

\\‘A Risk-adjusted return

Variance regularization

Can we optimize other reward aggregations,
directly, efficiently, and effectively?

Discounted sum is a recursive function

SUIILL, |ZTEN e = T +’7'r2+’7/2fr‘3—|—...
=7y +y(r2+yr3+...)

ry +ysum, |rg, T3, ... |

sum., | |

0

Discounted sum is a recursive function

sum,, |1y, I's, I's, ...| = T +7ysum, Iy, I's, ..

0

sum,, | | :

diagrammatic representation

R| =———— R

lists of rewards

)

Discounted sum is a recursive function

sum,, |1y, I's, I's, ...| = T +7ysum, Iy, I's, ...

0

sum., | | :

diagrammatic representation

R —mvovow—— 3 R

Discounted sum is a recursive function

sum,, |1y, I's, I's, ...| = T +ysum, Iy, I's, ...

0

sum,, | | :

diagrammatic representation

R| —— R

returns

Discounted sum is a recursive function

sum,, |1y, I's, I's, ...| = T +7ysum, Iy, I's, ...

0

sum., | | :

diagrammatic representation

[{] > R

Discounted sum is a recursive function

SUII

ry 4+ ysum, (1o, T3, ...

0

v 71, To, T3y oo -]

sum., | | :

*} + R X [R]| =———> {#} + R X R

nil, cons| l l 0, +.]

R| =———— R

Discounted sum is a recursive function

SUI

ry 4+ ysum, (1o, T3, ...

0

v T, T2, T3, ... |

sum., | |:

*} + R X [R]| =———> {#} + R X R

nil, cons| J' 0, +.]
\/ v
R| ——— R

function declaration

Discounted sum is a recursive function

SUII

ry 4+ ysum, |1y, 3, ...

0

~ [7“1, ray T's,]

sum., | | :

¥} + R x [R] =——p {+} + R x R

nil, cons| 0, 4]

R ———> R

recursive definition

Discounted sum is a recursive function

sum,, |1y, I's, I's, ...| = T +7ysum, Iy, I's, ...
sum,, | | 1= ()

¥} + R x [R] =——p {+} + R x R

nil, cons| l l 0, +.]

A I EE—

same endpoints — same composite

o, 7°3,

SUML, |71, T, T3,y + ..

71 + 7y suin

0

|

SUII]

v L]
1+ + R x |R| =——p {x} + R xR

nil, cons] l l 0,+,]

R| =—— R

sum., |

r, [T27 TS) S«

N

R X

COI1S

7“1, o, 7“3, c e

(6 s 2

[Tla o, T's, ..

= 71 +ysum, |ry, T3, ... |
] 1d]1;g X 1, [T27 rs,
—_—) R x R

] =

[7"2, o, ...

Discounted sum is a recursive function

SUII

ry +ysum,, (1o, T3, ...

0

v 71, To, T3y oo -]

sum., | | :

*} + R X [R]| =———> {#} + R X R

nil, cons| l l 0, +.]

R| =———— R

sum., is uniquely defined by [0, 4. via recursion.

... SO are many other aggregation functions.

max |1y, Ty, I's, ...| = max(ry, max |[ry, rg, ...|)

Hiax | | i= —cc

{*} + R x |R] =——p {x} + R X R

nil, cons| l l [—00, max|

S S——— -

max is uniquely defined by [—oo, max] via recursion.

... SO are many other aggregation functions.

agL [?“1, ro, s, = T Dagg[’r‘z, rs,]
agg []:= init

{*} + R x |R] =——p {x} + R X R

nil, cons] l l init, >

R| — R

They all have the same recursive structure!

... SO are many other aggregation functions.

agL [?“1, ro, s, = T Dagg[’r‘z, rs,]
agg []:= init

{*} + R x |R] =——p {x} + R X R

nil, cons] l l init, >

R| ———p I}

(1) initial value init € R
(2) update function >: R xR — R

We can aggregate multiple statistics at the same time

agL [7“1, ro, s, = T Dagg[’rz, il]
agg []:= init

id{*}—l—idRX
{*} + R X |[R] =——p {x} + RX T

nil, cons] l l init, >

R — T

statistics
(1) initial value init € T

(2) update function o: RxT — T

We can aggregate multiple statistics at the same time

agg rq, ro, T3, ...| 1= ry >agglry, r3, .. .]
agg []:= init

{*} + R X [R] =——p {x} + R X T

nil, cons] l l init, >

R > T

(1) initial value init € T
(2) update function o: RxT — T

... and we can post-process the aggregated statistics.

agg [rq, ro, T3, ...| := 1y >agglry, r3, .. .]
agg []:= init

id{*}—FidRX
{#} + R x [R] =——> {x} + Rx T

nil, cons] l l init, >

Re—)
len mean
(1) initial value TR B

(2) update function o: RxT — T
(3) post-processing post: T — R

... and we can post-process the aggregated statistics.

agg rq, ro, T3, ...| 1= ry >agglry, r3, .. .]
agg []:= init

id{*}—FidRX
{#} + R x [R] =——> {x} + R T

nil, cons] l l init, >

post

(1) initial value init € T
(2) update function o: RxT — T
(3) post-processing post: T — R

definition initial value of statistic(s) update function post-processing
post oagg; it : [R] = R init €T >:RxT —T post : T — R
discounted sum r{ +yry + - -+ 'yt_l?"t discounted sum s: 0 € R o im r,s =14y s| idp
discounted min min{ry,yro,..., 7" 7} discounted min n: co € R min., := [r,n — min(r,y - n)] idy
discounted max max{r;,yrq,...,7 'r;} discounted max m: —oco € R max., := |7, m — max(r,y - m)] iy
log-sum-exp log(e™ + e +---+¢€"%) log-sum-exp m: —oco € R [r,m — log(e" +¢e™)] idg

. max m |—oo| _ =2 - [m max(r, m) [m
range max(7y.;) — min(ry.;) o e (L2 R | L) | men
i length n [0 N| - [n L [n <
HHeat Fi= g i T Sum S ol € IR "ls| T s s| 7
length n [0 N [[n] TR [n]
= r, —> n-m-r = m
mean m |0 R - m e |m
N length n fol N - [n] ‘n+1]] [n] ,
variance % ZLl(Tz —7)" =7r" — 7 sum s c| R 8| = | 8+ ""2 i (i)
sum square q | 0] R>o g g =Ers | |19
length n [O] N N | f“yj;i [n] i
mean m 0Ole | R r, |m| — n+1 m| — v
variance v [0 |Rsq L v+ ”(T_TTLI)(;LH)”_ v]
top-1 [—o0 i) o8] i
: top-k top2 |- —k insert(r, r > min ,
top-k k-th largest in 7. Op Xl eR r, b < b +— minb
P g 1t buffor - i []

= \

Why does this matter?

Reward generation is also a recursive function

step..

Reward generation is also a recursive function
ld{*} ot ldR X gen,
{x} + RX § =————p {x} + R X [R]

step.. nil, cons|

Reward generation is also a recursive function
1d,y +1dp X gen,
{*} + R x § =———p {x} + R X [R]

step.. nil, cons]

gen
§ ————— > [R]
reward generation function

ld{*} +1dp X gen_
{x}+ Rx S =————p {x} + R X |R

step.. nil, cons

idg, +1dp X gen
{x}+ R X $§ =———p {x} + R X |R|

step.. nil, cons]

nil

(o (P idp X gen_ Ter1> el (S

fix§ ————> L+ Ex|f

step. CONS

oo

S i

St

gen_(s;) = N
rie1 gen (Sit1)

Reward generation is also a recursive function
ld{*} 5 ldR X geln,
{x} + RX § =———p {x} + R X [R]

step.. nil, cons|

G— 7 IR

cen IS uniquely defined by step_ via recursion.

Recursive generation and aggregation of rewards

ld{*} +idp X gen ld{*} +idp X
{x} + R X § = {x} + R x [R] {x} + R X [R] =——————p {x} + R x T
step._ generad tion nil, cons| [nil, cons] ' init, >]

cen is uniquely defined by step_ via recursion.

is uniquely defined by |init, >| via recursion.

Recursive generation and aggregation of rewards
lead to generalized Bellman equations.

ld{#:} +idgp X gen_
{4} + R X § =—]

id{*}—FidRX
R X |R| =— {4 R X T

stepﬂ,l g@ﬂ@ﬁ‘afﬂ@ﬂ l . l[init.{,b]

DIl

cen is uniquely defined by step_ via recursion.

IS uniquely defined by |init, >| via recursion.

Recursive generation and aggregation of rewards
lead to generalized Bellman equations.

cen IS uniquely defined by step_ via recursion.

is uniquely defined by |init, >| via recursion.

Recursive generation and aggregation of rewards
lead to generalized Bellman equations.

idy,y +idg X7,

ld{:k} —I—IdR X gen, 1d{*} —|—1dR X 9,0
Pk} + R XS el {4 |+ [} X | R| e { % | + I} X T

stepﬂ[generation l . gatio l[imm

€1l

f——————— s ———— 7

~ .

state statistic function

7. = age o gen IS uniquely defined by step_ and [init, >| via recursion.

Recursive generation and aggregation of rewards
lead to generalized Bellman equations.

ld{*} —|—1dR X T

ld{*} +idgp X gen ld{*} +idp X
¥} + R XS el {4 |+ X || el 1 % |+ I X T

step.. I ene Fa'f’i l Oon l fl 2t l init, >
oo pOSt

Ta value function

state statistic function v, := post o7,

7. = age o gen IS uniquely defined by step_ and [init, >| via recursion.

Theorem (Bellman equation for state statistic function)

T’JT(St)

init terminal
rie1 > T (S¢41) otherwise

For theorists:

m Recursive generation and aggregation — Bellman equations
m Preorder and premetric structures — convergence behaviors
m Unified deterministic and stochastic formulations

For practitioners:
m You can use your favorite value/critic-based algorithms.
m You can directly optimize the Sharpe ratio (=22) in finance, or

std
regularize the velocity range (max — min) in continuous control.

6.7

-5.6 =P 3.7 |-0.

: . \ /

SUIIly g9 IMaxgp g9 SUuIlg g9 —+ mMaxg g9 SUIlln gg — Var

Q-learning, PPO, TD3, ...

Mean, variance, range, the Sharpe ratio in portfolio optimization, ...

Recursive Reward Aggregation

Summary

m An algebraic perspective on Markov decision processes
m Generalized Bellman equations and Bellman operators
m |ntegration into value-based and actor-critic algorithms

Future work

m Multi-dimensional or non-numerical feedback?
m Agent states? Automata as aggregators?

m |List — tree, list function — tree traversal?

m |Logic, reasoning, safety, and alignment?

Recursive Reward Aggregation

Yuting Tang Yivan Zhang Johannes Ackermann
Yu-Jie Zhang Soichiro Nishimori Masashi Sugiyama

UTokyo @nik=n

Reinforcement Learning Conference 2025

