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Inreinforcement learning, an agent obtains a sequence of rewards
as it takes actions in a dynamic environment.

We use the discounted sum to evaluate its performance.
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Why do we optimize the discounted sum of rewards?



Why do we optimize the discounted sum of rewards?

m Standard? Convenient? Mathematically elegant?

m Practical benefits? Higher, sooner rewards preferred

m Theoretical guarantees? Contraction — unique fixed point

m Reward hypothesis? If true, all preferences can be represented

But... does it always align with our requirements?
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Can we optimize other reward aggregations,
directly, efficiently, and effectively?



Discounted sum is a recursive function
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Discounted sum is a recursive function
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Discounted sum is a recursive function
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Discounted sum is a recursive function
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Discounted sum is a recursive function
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sum., is uniquely defined by [0, 4. via recursion.



... SO are many other aggregation functions.
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... SO are many other aggregation functions.
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They all have the same recursive structure!



... SO are many other aggregation functions.
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We can aggregate multiple statistics at the same time
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We can aggregate multiple statistics at the same time
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... and we can post-process the aggregated statistics.
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Why does this matter?



Reward generation is also a recursive function
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Reward generation is also a recursive function
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cen IS uniquely defined by step_ via recursion.



Recursive generation and aggregation of rewards
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Recursive generation and aggregation of rewards
lead to generalized Bellman equations.
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Recursive generation and aggregation of rewards
lead to generalized Bellman equations.
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Recursive generation and aggregation of rewards
lead to generalized Bellman equations.
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Theorem (Bellman equation for state statistic function)

T’JT(St)

init terminal
rie1 > T (S¢41) otherwise

For theorists:

m Recursive generation and aggregation — Bellman equations
m Preorder and premetric structures — convergence behaviors
m Unified deterministic and stochastic formulations

For practitioners:
m You can use your favorite value/critic-based algorithms.
m You can directly optimize the Sharpe ratio (=22) in finance, or

std
regularize the velocity range (max — min) in continuous control.
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Q-learning, PPO, TD3, ...

Mean, variance, range, the Sharpe ratio in portfolio optimization, ...



Recursive Reward Aggregation

Summary

m An algebraic perspective on Markov decision processes
m Generalized Bellman equations and Bellman operators
m |ntegration into value-based and actor-critic algorithms

Future work

m Multi-dimensional or non-numerical feedback?
m Agent states? Automata as aggregators?

m |List — tree, list function — tree traversal?

m |Logic, reasoning, safety, and alignment?
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