# Recursive Reward Aggregation

Yuting Tang Yivan Zhang Johannes Ackermann Yu-Jie Zhang Soichiro Nishimori Masashi Sugiyama





Reinforcement Learning Conference 2025

In reinforcement learning, an agent obtains a sequence of rewards as it takes actions in a dynamic environment.

$$r_1$$
  $r_2$   $r_3$   $\dots$ 

We use the discounted sum to evaluate its performance.

$$\operatorname{sum}_{\gamma} [r_1, r_2, r_3, \dots] := r_1 + \gamma r_2 + \gamma^2 r_3 + \dots \quad \gamma \in [0, 1]$$

Why do we optimize the discounted sum of rewards?

# Why do we optimize the discounted sum of rewards?

- Standard? Convenient? Mathematically elegant?
- Practical benefits? Higher, sooner rewards preferred
- Theoretical guarantees? Contraction → unique fixed point
- Reward hypothesis? If true, all preferences can be represented

#### But... does it always align with our requirements?



Sobel (1982), Quah & Quek (2006), Wang et al. (2020), Cui & Yu (2023)



Can we optimize other reward aggregations, directly, efficiently, and effectively?

$$sum_{\gamma} [r_1, r_2, r_3, \dots] = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots 
= r_1 + \gamma (r_2 + \gamma r_3 + \dots) 
= r_1 + \gamma sum_{\gamma} [r_2, r_3, \dots]$$

$$sum_{\gamma} [] = 0$$

$$sum_{\gamma} [r_1, r_2, r_3, \dots] := r_1 + \gamma sum_{\gamma} [r_2, r_3, \dots]$$

$$sum_{\gamma} [] := 0$$



$$sum_{\gamma} [r_1, r_2, r_3, \dots] := r_1 + \gamma sum_{\gamma} [r_2, r_3, \dots]$$

$$sum_{\gamma} [] := 0$$



$$sum_{\gamma} [r_1, r_2, r_3, \dots] := r_1 + \gamma sum_{\gamma} [r_2, r_3, \dots]$$

$$sum_{\gamma} [] := 0$$



$$sum_{\gamma} [r_1, r_2, r_3, \dots] := r_1 + \gamma sum_{\gamma} [r_2, r_3, \dots]$$

$$sum_{\gamma} [] := 0$$



$$sum_{\gamma} [r_1, r_2, r_3, \dots] := r_1 + \gamma sum_{\gamma} [r_2, r_3, \dots]$$

$$sum_{\gamma} [] := 0$$



$$sum_{\gamma} [r_1, r_2, r_3, ...] := r_1 + \gamma sum_{\gamma} [r_2, r_3, ...]$$
 $sum_{\gamma} [] := 0$ 



#### function declaration

$$sum_{\gamma} [r_1, r_2, r_3, ...] := r_1 + \gamma sum_{\gamma} [r_2, r_3, ...]$$
 $sum_{\gamma} [] := 0$ 



#### recursive definition

$$sum_{\gamma} [r_1, r_2, r_3, \dots] := r_1 + \gamma sum_{\gamma} [r_2, r_3, \dots]$$

$$sum_{\gamma} [] := 0$$



#### same endpoints → same composite

$$sum_{\gamma} [r_1, r_2, r_3, \dots] := r_1 + \gamma sum_{\gamma} [r_2, r_3, \dots]$$

$$sum_{\gamma} [] := 0$$

$$\{*\} + \mathbb{R} \times [\mathbb{R}] \xrightarrow{\mathrm{id}_{\{*\}} + \mathrm{id}_{\mathbb{R}} \times \mathrm{sum}_{\gamma}} \{*\} + \mathbb{R} \times \mathbb{R}$$

$$[\mathrm{nil}, \mathrm{cons}] \downarrow \qquad \qquad \downarrow [0, +_{\gamma}]$$

$$[\mathbb{R}] \xrightarrow{\mathrm{sum}_{\gamma}} \mathbb{R}$$

$$sum_{\gamma} [r_1, r_2, r_3, \dots] := r_1 + \gamma sum_{\gamma} [r_2, r_3, \dots]$$

$$sum_{\gamma} [] := 0$$

$$sum_{\gamma} [r_1, r_2, r_3, \dots] := r_1 + \gamma sum_{\gamma} [r_2, r_3, \dots]$$
 $sum_{\gamma} [] := 0$ 

$$sum_{\gamma} [r_1, r_2, r_3, \dots] := r_1 + \gamma sum_{\gamma} [r_2, r_3, \dots]$$

$$sum_{\gamma} [] := 0$$



 $\operatorname{sum}_{\gamma}$  is uniquely defined by  $[0, +_{\gamma}]$  via recursion.

### ... so are many other aggregation functions.

$$\max [r_1, r_2, r_3, \dots] := \max(r_1, \max [r_2, r_3, \dots])$$
 $\max [] := -\infty$ 



max is uniquely defined by  $[-\infty, \max]$  via recursion.

#### ... so are many other aggregation functions.

agg 
$$[r_1, r_2, r_3, \dots] := r_1 \triangleright \arg[r_2, r_3, \dots]$$
  
agg  $[] := init$ 



They all have the same recursive structure!

## ... so are many other aggregation functions.

agg 
$$[r_1, r_2, r_3, \dots] := r_1 \triangleright \arg[r_2, r_3, \dots]$$
  
agg  $[] := init$ 



- (1) initial value  $init \in R$
- (2) update function  $\triangleright : R \times R \rightarrow R$

# We can aggregate multiple statistics at the same time

agg 
$$[r_1, r_2, r_3, \dots] := r_1 \triangleright \arg[r_2, r_3, \dots]$$
  
agg  $[] := init$ 



- initial value
- (2) update function  $\triangleright : R \times T \rightarrow T$

# We can aggregate multiple statistics at the same time

agg 
$$[r_1, r_2, r_3, \dots] := r_1 \triangleright \arg[r_2, r_3, \dots]$$
  
agg  $[] := init$ 



- (1) initial value  $init \in T$
- (2) update function  $\triangleright : R \times T \rightarrow T$

### ... and we can post-process the aggregated statistics.

agg 
$$[r_1, r_2, r_3, \dots] := r_1 \triangleright \arg[r_2, r_3, \dots]$$
  
agg  $[] := init$ 



### ... and we can post-process the aggregated statistics.

agg 
$$[r_1, r_2, r_3, \dots] := r_1 \triangleright \arg[r_2, r_3, \dots]$$
  
agg  $[] := init$ 



- (1) initial value  $init \in T$
- (2) update function  $\triangleright : R \times T \rightarrow T$
- (3) post-processing post:  $T \rightarrow R$

|                        | $\text{definition} \\ \text{post} \circ \text{agg}_{\text{init},\triangleright} : [R] \to R$ | initial value of statistic(s) init $\in T$                                                                                                                                                                                                                                                                                                         | $\begin{array}{l} \text{update function} \\ \triangleright: R \times T \to T \end{array}$                                                                                                      | $\begin{array}{c} \text{post-processing} \\ \text{post}: T \rightarrow R \end{array}$                       |
|------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| discounted sum         | $r_1 + \gamma r_2 + \dots + \gamma^{t-1} r_t$                                                | discounted sum $s: 0 \in \mathbb{R}$                                                                                                                                                                                                                                                                                                               | $+_{\gamma} := [r, s \mapsto r + \gamma \cdot s]$                                                                                                                                              | $\mathrm{id}_{\mathbb{R}}$                                                                                  |
| discounted min         | $\min\{r_1, \gamma r_2, \dots, \gamma^{t-1} r_t\}$                                           | discounted min $n: \infty \in \overline{\mathbb{R}}$                                                                                                                                                                                                                                                                                               | $\min_{\gamma} \vcentcolon= [r, n \mapsto \min(r, \gamma \cdot n)]$                                                                                                                            | $\mathrm{id}_{\overline{\mathbb{R}}}$                                                                       |
| discounted max         | $\max\{r_1, \gamma r_2, \dots, \gamma^{t-1} r_t\}$                                           | discounted max $m: -\infty \in \overline{\mathbb{R}}$                                                                                                                                                                                                                                                                                              | $\max_{\gamma} \vcentcolon= [r, m \mapsto \max(r, \gamma \cdot m)]$                                                                                                                            | $\mathrm{id}_{\overline{\mathbb{R}}}$                                                                       |
| $\log$ -sum-exp        | $\log(e^{r_1} + e^{r_2} + \dots + e^{r_t})$                                                  | $\log\text{-sum-exp}\ m\colon -\infty\in\overline{\mathbb{R}}$                                                                                                                                                                                                                                                                                     | $[r, m \mapsto \log(e^r + e^m)]$                                                                                                                                                               | $\mathrm{id}_{\overline{\mathbb{R}}}$                                                                       |
| range                  | $\max(r_{1:t}) - \min(r_{1:t})$                                                              | $ \max_{\min n} m \begin{bmatrix} -\infty \\ \infty \end{bmatrix} \in \overline{\mathbb{R}}^2 $                                                                                                                                                                                                                                                    | $\begin{bmatrix} r, \begin{bmatrix} m \\ n \end{bmatrix} \mapsto \begin{bmatrix} \max(r, m) \\ \min(r, n) \end{bmatrix} \end{bmatrix}$                                                         | $\left[ \begin{bmatrix} m \\ n \end{bmatrix} \mapsto m - n \right]$                                         |
| mean                   | $\overline{r} := \frac{1}{t} \sum_{i=1}^{t} r_i$                                             | $ \operatorname{sum} s  \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \begin{bmatrix} \mathbb{N} \\ \mathbb{R} \end{bmatrix} $                                                                                                                                                                                                                          | $\left[r, \begin{bmatrix} n \\ s \end{bmatrix} \mapsto \begin{bmatrix} n+1 \\ s+r \end{bmatrix}\right]$                                                                                        | $\left[ \begin{bmatrix} n \\ s \end{bmatrix} \mapsto \frac{s}{n} \right]$                                   |
|                        |                                                                                              | $ \frac{\text{length } n}{\text{mean } m} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \begin{bmatrix} \mathbb{N} \\ \mathbb{R} \end{bmatrix} $                                                                                                                                                                                                        | $\left[r, \begin{bmatrix} n \\ m \end{bmatrix} \mapsto \begin{bmatrix} n+1 \\ \frac{n \cdot m + r}{n+1} \end{bmatrix}\right]$                                                                  | $ \begin{bmatrix} \begin{bmatrix} n \\ m \end{bmatrix} \mapsto m \end{bmatrix} $                            |
| variance               | $\frac{1}{t} \sum_{i=1}^{t} (r_i - \overline{r})^2 = \overline{r^2} - \overline{r}^2$        | $ \begin{array}{ccc} \operatorname{length} n & \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \begin{bmatrix} \mathbb{N} \\ \mathbb{R} \\ \mathbb{R}_{\geq 0} \end{bmatrix} $ $ \operatorname{sum} \operatorname{square} q \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \begin{bmatrix} \mathbb{N} \\ \mathbb{R} \\ \mathbb{R}_{\geq 0} \end{bmatrix} $ | $\begin{bmatrix} r, \begin{bmatrix} n \\ s \\ q \end{bmatrix} \mapsto \begin{bmatrix} n+1 \\ s+r \\ q+r^2 \end{bmatrix} \end{bmatrix}$                                                         | $\left[ \begin{bmatrix} n \\ s \\ q \end{bmatrix} \mapsto \frac{q}{n} - \left(\frac{s}{n}\right)^2 \right]$ |
|                        |                                                                                              | length $n$ $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \begin{bmatrix} \mathbb{N} \\ \mathbb{R} \\ \mathbb{R}_{\geq 0} \end{bmatrix}$ variance $v$                                                                                                                                                                                              | $\begin{bmatrix} r, \begin{bmatrix} n \\ m \\ v \end{bmatrix} \mapsto \begin{bmatrix} \frac{n+1}{\frac{n\cdot m+r}{n+1}} \\ v + \frac{n(r-m)^2 - (n+1)v}{(n+1)^2} \end{bmatrix} \end{bmatrix}$ | $\left[ \begin{bmatrix} n \\ m \\ v \end{bmatrix} \mapsto v \right]$                                        |
| $\mathrm{top}	ext{-}k$ | $k$ -th largest in $r_{1:t}$                                                                 | $\begin{array}{ccc} \operatorname{top-1} & \operatorname{top-1} & \begin{bmatrix} -\infty \\ -\infty \end{bmatrix} \in \overline{\mathbb{R}}^k \\ \vdots & \vdots & \end{bmatrix}$                                                                                                                                                                 | $\begin{bmatrix} r, b \mapsto \begin{cases} \operatorname{insert}(r, b) & r > \min b \\ b & r \le \min b \end{bmatrix}$                                                                        | $[b\mapsto \min b]$                                                                                         |

|                | definition                                                                            | initial value of statistic(s)                                                                                                                                                                                                                                         | update function                                                                                                                                                                                | post-processing                                                                                                            |
|----------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                | $post \circ agg_{init,\triangleright} : [R] \to R$                                    | $init \in T$                                                                                                                                                                                                                                                          | $\triangleright: R \times T \to T$                                                                                                                                                             | $post: T \to R$                                                                                                            |
| discounted sum | $r_1 + \gamma r_2 + \dots + \gamma^{t-1} r_t$                                         | discounted sum $s: 0 \in \mathbb{R}$                                                                                                                                                                                                                                  | $+_{\gamma} := [r, s \mapsto r + \gamma \cdot s]$                                                                                                                                              | $\mathrm{id}_{\mathbb{R}}$                                                                                                 |
| discounted min | $\min\{r_1, \gamma r_2, \dots, \gamma^{t-1} r_t\}$                                    | discounted min $n: \infty \in \overline{\mathbb{R}}$                                                                                                                                                                                                                  | $\min_{\gamma} := [r, n \mapsto \min(r, \gamma \cdot n)]$                                                                                                                                      | $\mathrm{id}_{\overline{\mathbb{R}}}$                                                                                      |
| discounted max | $\max\{r_1, \gamma r_2, \dots, \gamma^{t-1} r_t\}$                                    | discounted max $m: -\infty \in \overline{\mathbb{R}}$                                                                                                                                                                                                                 | $\max_{\gamma} := [r, m \mapsto \max(r, \gamma \cdot m)]$                                                                                                                                      | $\mathrm{id}_{\overline{\mathbb{R}}}$                                                                                      |
| log-sum-exp    | $\log(e^{r_1} + e^{r_2} + \dots + e^{r_t})$                                           | $\log\text{-sum-exp}\ m\colon -\infty\in\overline{\mathbb{R}}$                                                                                                                                                                                                        | $[r, m \mapsto \log(e^r + e^m)]$                                                                                                                                                               | $\mathrm{id}_{\overline{\mathbb{R}}}$                                                                                      |
| range          | $\max(r_{1:t}) - \min(r_{1:t})$                                                       | $ \max_{\min n} m \begin{bmatrix} -\infty \\ \infty \end{bmatrix} \in \overline{\mathbb{R}}^2 $                                                                                                                                                                       | $\begin{bmatrix} r, \begin{bmatrix} m \\ n \end{bmatrix} \mapsto \begin{bmatrix} \max(r, m) \\ \min(r, n) \end{bmatrix} \end{bmatrix}$                                                         | $\left[ \begin{bmatrix} m \\ n \end{bmatrix} \mapsto m - n \right]$                                                        |
| mean           | $\overline{r} := rac{1}{t} \sum_{i=1}^t r_i$                                         | $\lim_{s \to \infty} s \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \begin{bmatrix} \mathbb{N} \\ \mathbb{R} \end{bmatrix}$                                                                                                                                               | $\begin{bmatrix} r, \begin{bmatrix} n \\ s \end{bmatrix} \mapsto \begin{bmatrix} n+1 \\ s+r \end{bmatrix} \end{bmatrix}$                                                                       | $\left[ \begin{bmatrix} n \\ s \end{bmatrix} \mapsto \frac{s}{n} \right]$                                                  |
|                | VVIIV                                                                                 | mean $m \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} \mathbb{N} \\ \mathbb{R} \end{bmatrix}$                                                                                                                                                                       |                                                                                                                                                                                                | $\left[ \begin{bmatrix} n \\ m \end{bmatrix} \mapsto m \right]$                                                            |
| variance       | $\frac{1}{t} \sum_{i=1}^{t} (r_i - \overline{r})^2 = \overline{r^2} - \overline{r}^2$ | $ \begin{array}{ll} \operatorname{length} n \\ \operatorname{sum} s \\ \operatorname{sum} \operatorname{square} q \end{array} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \begin{bmatrix} \mathbb{N} \\ \mathbb{R} \\ \mathbb{R}_{\geq 0} \end{bmatrix} $           | $\begin{bmatrix} r, \begin{bmatrix} n \\ s \\ q \end{bmatrix} \mapsto \begin{bmatrix} n+1 \\ s+r \\ q+r^2 \end{bmatrix} \end{bmatrix}$                                                         | $\begin{bmatrix} \begin{bmatrix} n \\ s \\ q \end{bmatrix} \mapsto \frac{q}{n} - \left(\frac{s}{n}\right)^2 \end{bmatrix}$ |
|                |                                                                                       | length $n$ $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \begin{bmatrix} \mathbb{N} \\ \mathbb{R} \\ \mathbb{R}_{\geq 0} \end{bmatrix}$ variance $v$                                                                                                                 | $\begin{bmatrix} r, \begin{bmatrix} n \\ m \\ v \end{bmatrix} \mapsto \begin{bmatrix} \frac{n+1}{\frac{n\cdot m+r}{n+1}} \\ v + \frac{n(r-m)^2 - (n+1)v}{(n+1)^2} \end{bmatrix} \end{bmatrix}$ | $\left[ \begin{bmatrix} n \\ m \\ v \end{bmatrix} \mapsto v \right]$                                                       |
| top-k          | $k$ -th largest in $r_{1:t}$                                                          | $ \begin{array}{ccc} \operatorname{top-1} & \operatorname{top-1} \\ \operatorname{top-k} & \operatorname{top-2} \\ \operatorname{buffer} & \vdots & \begin{bmatrix} -\infty \\ -\infty \end{bmatrix} \in \overline{\mathbb{R}}^k \\ \vdots & \vdots & \end{bmatrix} $ | $\begin{bmatrix} r, b \mapsto \begin{cases} \operatorname{insert}(r, b) & r > \min b \\ b & r \le \min b \end{bmatrix}$                                                                        | $[b\mapsto \min b]$                                                                                                        |







$$\{*\} + R \times S \xrightarrow{\operatorname{id}_{\{*\}} + \operatorname{id}_{R} \times \operatorname{gen}_{\pi}} \quad \{*\} + R \times [R]$$

$$\operatorname{step}_{\pi} \qquad \qquad [\operatorname{nil}, \operatorname{cons}]$$

$$S \xrightarrow{\operatorname{gen}_{\pi}} \qquad \qquad [R]$$

$$\{*\} + R \times S \xrightarrow{\operatorname{id}_{\{*\}} + \operatorname{id}_{R} \times \operatorname{gen}_{\pi}} \{*\} + R \times [R]$$

$$\operatorname{step}_{\pi} \qquad \qquad \downarrow^{[\operatorname{nil}, \operatorname{cons}]}$$

$$S \xrightarrow{\operatorname{gen}_{\pi}} [R]$$

$$\operatorname{gen}_{\pi}(s_{t}) = \left\{$$

$$\begin{cases}
* \\ * \\ + R \times S
\end{cases}$$

$$\Rightarrow \begin{cases}
* \\ * \\ + R \times [R]
\end{cases}$$

$$\Rightarrow \begin{cases}
\text{step}_{\pi}
\end{cases}$$

$$S \\
s_{t}
\end{cases}$$

$$\Rightarrow [R]$$

$$\text{gen}_{\pi}(s_{t}) = \begin{cases}
[]
\end{cases}$$

$$\Rightarrow [R]$$

$$r_{t+1}, s_{t+1} \quad \operatorname{id}_{\{*\}} + \operatorname{id}_{R} \times \operatorname{gen}_{\pi} \qquad r_{t+1}, \operatorname{gen}_{\pi}(s_{t+1})$$

$$\{*\} + R \times S \qquad \qquad \blacktriangleright \{*\} + R \times [R] \qquad \qquad |$$

$$\operatorname{step}_{\pi} \qquad \qquad |$$

$$S \qquad \qquad \qquad |$$

$$\operatorname{gen}_{\pi}(s_{t}) = \begin{cases} [] \qquad \text{terminal} \\ r_{t+1} : \operatorname{gen}_{\pi}(s_{t+1}) \text{ otherwise} \end{cases}$$



 $gen_{\pi}$  is uniquely defined by  $step_{\pi}$  via recursion.

# Recursive generation and aggregation of rewards



 $\operatorname{gen}_{\pi}$  is uniquely defined by  $\operatorname{step}_{\pi}$  via recursion.

agg is uniquely defined by [init, ▷] via recursion.



 $\operatorname{gen}_{\pi}$  is uniquely defined by  $\operatorname{step}_{\pi}$  via recursion. agg is uniquely defined by  $[\operatorname{init}, \triangleright]$  via recursion.



Hinze et al. (2010)

 $\operatorname{gen}_{\pi}$  is uniquely defined by  $\operatorname{step}_{\pi}$  via recursion.

agg is uniquely defined by [init, ▷] via recursion.



 $\tau_{\pi} = \underset{\pi}{\operatorname{agg}} \circ \underset{\pi}{\operatorname{gen}}_{\pi}$  is uniquely defined by  $\operatorname{step}_{\pi}$  and  $[\operatorname{init}, \triangleright]$  via recursion.



 $\tau_{\pi} = \underset{\pi}{\operatorname{agg}} \circ \underset{\pi}{\operatorname{gen}}_{\pi}$  is uniquely defined by  $\operatorname{step}_{\pi}$  and  $[\operatorname{init}, \triangleright]$  via recursion.

Theorem (Bellman equation for state statistic function)

$$au_{\pi}(s_t) = \begin{cases} ext{init} & ext{terminal} \\ r_{t+1} \triangleright au_{\pi}(s_{t+1}) & ext{otherwise} \end{cases}$$

#### For theorists:

- lacktriangle Recursive generation and aggregation ightarrow Bellman equations
- lacktriangle Preorder and premetric structures ightarrow convergence behaviors
- Unified deterministic and stochastic formulations

#### For practitioners:

- You can use your favorite value/critic-based algorithms.
- You can directly optimize the Sharpe ratio  $(\frac{\text{mean}}{\text{std}})$  in finance, or regularize the velocity range  $(\max \min)$  in continuous control.



Q-learning, PPO, TD3, ...

Mean, variance, range, the Sharpe ratio in portfolio optimization, ...

# Recursive Reward Aggregation

#### Summary

- An algebraic perspective on Markov decision processes
- Generalized Bellman equations and Bellman operators
- Integration into value-based and actor-critic algorithms

#### **Future work**

- Multi-dimensional or non-numerical feedback?
- Agent states? Automata as aggregators?
- List  $\rightarrow$  tree, list function  $\rightarrow$  tree traversal?
- Logic, reasoning, safety, and alignment?

# Recursive Reward Aggregation

Yuting Tang Yivan Zhang Johannes Ackermann Yu-Jie Zhang Soichiro Nishimori Masashi Sugiyama





Reinforcement Learning Conference 2025