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What is disentanglement?
Disentanglement : the process of identifying and separating the underlying
factors of variation in data.

?
(a) Composition

sweet

sour

(b) Supervision

taste?

(c) Generalization

Factors: colors, shapes, and tastes
Task: taste prediction based on colors and shapes
We can predict unseen candies without observing all combinations.

Can a neural network do this?
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Existing definitions

Algebraic approach: group theory, representation theory

Group actions capture the symmetries of an object [Cohen and Welling, 2014,
2015]. A disentangled encoder should be equivariant to group actions of a
direct product of groups [Higgins et al., 2018].

Statistical approach: probability, statistics, information theory

Probabilistic models capture the relationships and uncertainty of variables.
A disentangled encoder should satisfy certain statistical independence
conditions [Higgins et al., 2017, Chen et al., 2018, Suter et al., 2019].

What do direct product of groups and independent random variables
have in common?
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A unified perspective?

Questions
What are the defining properties of disentanglement?
Can we define disentanglement using only sets and functions?
Are the existing algebraic and statistical approaches compatible?

Category theory : cartesian/monoidal product underlies many existing
definitions of disentanglement.
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Product: core of disentanglement

...
(red, circle)

(green, circle)
(blue, triangle)
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sweet
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circle

triangle

set set set
function function

composite function

identity function

Set: category of sets and functions

A function C Ñ A ˆ B
to a Cartesian product of sets
is just two component functions
C Ñ A and C Ñ B.

A function A ˆ B Ñ C
from a Cartesian product of sets
can depend on both components.

When is A ˆ B Ñ C just A Ñ C?
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Defining properties of disentangled representations

Modularity : factor Y Ñ code Z is a product morphism.
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Informativeness : factor Y Ñ code Z is a split monomorphism.
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Equivariant maps

˚

˚ ˆ ˇ

ˇ
Z1

X Z

Z2

a

aˆb

b
aZ

f :“ϕ˚ ˆ ˇ
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algebra, action, and equivariance⇝ functors and natural transformations
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Stochastic maps

Y1 Y2

Z1 Z2

m
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m m

Y1 Y2

Z1 Z2

m1 m2“ “

measure, joint, and independence⇝Markov category of stochastic maps
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Conclusion

Modularity, direct product, independence⇝ product in a category
Formulation of disentanglement in more complex problems
More structures and operations beyond product!
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