Enriching Disentanglement: Definitions to Metrics

Yivan Zhang^{1, 2} Masashi Sugiyama^{2, 1} ¹The University of Tokyo ²RIKEN AIP

Can we measure injectivity?

In supervised learning, we can use the total cost over a collection of input-output pairs to measure the performance of a function, which can be considered as a "metric" $L : [X, Y] \times [X, Y] \rightarrow \mathbb{R}$ between functions:

$$L(f,g) := \sum_{x} \ell(f(x),g(x)), \tag{1}$$

where g is a "ground-truth function" that maps each input x to its target label y. It measures how much two functions f and g are equal:

$$(f = g) := \forall x. \ (f(x) = g(x)).$$
(2)

- In representation learning [Bengio et al., 2013], we may want a function to preserve informative factors in data: if two inputs x_1 and x_2 have different factors, $x_1 \neq x_2$, then their representations extracted by a function $f: X \to Z$ should be different too, $f(x_1) \neq f(x_2)$, which means that the representation extractor $f : X \to Z$ should be *injective*.
- An injective function $f: X \to Z$ is *left-cancellable*:

$$\forall g_1, g_2 : W \to X. \ (f \circ g_1 = f \circ g_2) \to (g_1 = g_2).$$
 (3)

An injective function $f : X \to Z$ has a *left-inverse*:

$$\exists g: Z \to X. \ g \circ f = \mathrm{id}_X.$$
(4)

Just as we can measure function equality in terms of the total cost, can we measure injectivity, left-cancellability, and left-invertibility?

arXiv:2305.11512 https://**yivan.xyz**

(b) entangled codes Z

Premetric-enriched monoidal category

A monoidal category enriched in a category of premetric spaces, in which there is a *premetric* $d_{[A,B]}$ from object A to object B, describes a collection of premetrics between morphisms that are compatible with composition and monoidal product.

■ The *composition* • combines morphisms in *series*.

 $d_{[B,C]}(g,g') \oplus d_{[A,B]}(f,f') \preceq d_{[A,C]}(g \circ f,g' \circ f').$

• The *monoidal product* \otimes combines morphisms in *parallel*.

 $d_{[A,B]}(f,f') \oplus d_{[C,D]}(h,h') \preceq d_{[A \otimes C, B \otimes D]}(f \otimes h, f' \otimes h').$

Quantale-valued premetric

(c) product approximation of an encoder $m: Y \to Z$

(d) linear approximation of its left-inverse $h: Z \to Y$

Modularity: a code encodes only one factor

 \blacksquare $m: Y \to Z$ is a product function $m = \prod_i m_{i,i}$:

 $\forall i \in [1..N]. \exists m_{i,i} : Y_i \to Z_i. m_i : Y \to Z_i := p_i \circ m = m_{i,i} \circ p_i.$

Product approximation:

 $\max_{i \in [1..N]} \min_{m_{i,i}: Y_i \to Z_i} \max_{y \in Y} d_{Z_i}(m_i(y), m_{i,i}(y_i)).$

The exponential transpose $\widehat{m_i}: Y_{\setminus i} \to [Y_i, Z_i]$ is constant:

 $\forall i \in [1..N]. \ \forall y_{\setminus i}, y'_{\setminus i} \in Y_{\setminus i}. \ \widehat{m_i}(y_{\setminus i}) = \widehat{m_i}(y'_{\setminus i}).$

■ The maximal pairwise distance between the *i*-th outputs when the *i*-th input is fixed:

 $\max_{i \in [1..N]} \max_{y_{\backslash i}, y_{\backslash i}' \in Y_{\backslash i}} \max_{y_i \in Y_i} d_{Z_i}(m_i(y_i, y_{\backslash i}), m_i(y_i, y_{\backslash i}')).$

Informativeness: codes encode factors faithfully

 \blacksquare $m: Y \rightarrow Z$ is left-invertible:

 $\exists h: Z \to Y. h \circ m = \mathrm{id}_V.$

Left-inverse approximation:

If the premetrics take value in a *quantale* (monoidal closed cocartesian thin category), there exist order operations that behave like logical connectives (e.g., conjunction, implication).

(Q, \preceq)	$(\{\bot,\top\},\vdash)$	$([0,\infty],\geq)$
top $ op$	true ⊤	zero 0
bottom \perp	false \perp	infinity ∞
meet \land	conjunction \land	maximum max
join ∨	disjunction \lor	minimum min
monoidal product \oplus	conjunction \land	addition +
internal hom $-$	implication $ ightarrow$	subtraction –

We can use a monoidal category enriched in a category of quantale-valued premetrics to derive disentanglement metrics from disentanglement definitions [Zhang and Sugiyama, 2023]!

$\min_{h:Z \to Y} \max_{y \in Y} d_Y(h(m(y)), y).$

\blacksquare $m: Y \rightarrow Z$ is injective:

 $\forall y, y' \in Y. \ (m(y) = m(y')) \rightarrow (y = y').$

Contraction:

 $\max \max\{d_Y(y, y') - d_Z(m(y), m(y')), 0\}.$ $y,y' \in Y$

Future research directions

- Can we use other aggregate functions (e.g., mean, median)?
- Can we optimize these metrics with minimal supervision?

References

- Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.
- Yivan Zhang and Masashi Sugiyama. A category-theoretical meta-analysis of definitions of disentanglement. In ICML, 2023.