Can we measure injectivity？

■ In supervised learning，we can use the total cost over a collection of input－output pairs to measure the performance of a function， which can be considered as a＂metric＂$L:[X, Y] \times[X, Y] \rightarrow \mathbb{R}$ between functions：

$$
\begin{equation*}
L(f, g):=\sum_{x} \ell(f(x), g(x)), \tag{1}
\end{equation*}
$$

where g is a＂ground－truth function＂that maps each input x to its target label y ．It measures how much two functions f and g are equal：

$$
\begin{equation*}
(f=g):=\forall x .(f(x)=g(x)) . \tag{2}
\end{equation*}
$$

－In representation learning［Bengio et al．，2013］，we may want a function to preserve informative factors in data：if two inputs x_{1} and x_{2} have different factors，$x_{1} \neq x_{2}$ ，then their representations extracted by a function $f: X \rightarrow Z$ should be different too，$f\left(x_{1}\right) \neq f\left(x_{2}\right)$ ， which means that the representation extractor $f: X \rightarrow Z$ should be injective．
■ An injective function $f: X \rightarrow Z$ is left－cancellable：

$$
\begin{equation*}
\forall g_{1}, g_{2}: W \rightarrow X .\left(f \circ g_{1}=f \circ g_{2}\right) \rightarrow\left(g_{1}=g_{2}\right) . \tag{3}
\end{equation*}
$$

An injective function $f: X \rightarrow Z$ has a left－inverse：

$$
\begin{equation*}
\exists g: Z \rightarrow X . g \circ f=\operatorname{id}_{X} \tag{4}
\end{equation*}
$$

■ Just as we can measure function equality in terms of the total cost，can we measure injectivity，left－cancellability，and left－invertibility？

Premetric－enriched monoidal category

A monoidal category enriched in a category of premetric spaces， in which there is a premetric $d_{[A, B]}$ from object A to object B ， describes a collection of premetrics between morphisms that are compatible with composition and monoidal product

■ The composition o combines morphisms in series．

$$
d_{[B, C]}\left(g, g^{\prime}\right) \oplus d_{[A, B]}\left(f, f^{\prime}\right) \preceq d_{[A, C]}\left(g \circ f, g^{\prime} \circ f^{\prime}\right) .
$$

－The monoidal product \otimes combines morphisms in parallel．

$$
d_{[A, B]}\left(f, f^{\prime}\right) \oplus d_{[C, D]}\left(h, h^{\prime}\right) \preceq d_{[A \otimes C, B \otimes D]}\left(f \otimes h, f^{\prime} \otimes h^{\prime}\right)
$$

Quantale－valued premetric

If the premetrics take value in a quantale（monoidal closed cocartesian thin category），there exist order operations that behave like logical connectives（e．g．，conjunction，implication）．

(Q, \preceq)	$(\{\perp, \top\}, \vdash)$	$([0, \infty], \geq)$
top \top	true \top	zero 0
bottom \perp	false \perp	infinity ∞
meet \wedge	conjunction \wedge	maximum max
join \vee	disjunction \vee	minimum min
monoidal product \oplus	conjunction \wedge	addition +
internal hom \multimap	implication \rightarrow	subtraction -

We can use a monoidal category enriched in a category of quantale－valued premetrics to derive disentanglement metrics from disentanglement definitions［Zhang and Sugiyama，2023］！

（c）product approximation of an encoder $m: Y \rightarrow Z$

（d）linear approximation of its left－inverse $h: Z \rightarrow Y$

Modularity：a code encodes only one factor

■ $m: Y \rightarrow Z$ is a product function $m=\prod_{i} m_{i, i}$ ：
$\forall i \in[1 . . N] . \exists m_{i, i}: Y_{i} \rightarrow Z_{i} . m_{i}: Y \rightarrow Z_{i}:=p_{i} \circ m=m_{i, i} \circ p_{i}$.
■ Product approximation：

$$
\max _{i \in[1 . N]} \min _{m_{i, i} \cdot Y_{i} \rightarrow Z_{i}} \max _{y \in Y} d_{Z_{i}}\left(m_{i}(y), m_{i, i}\left(y_{i}\right)\right) .
$$

■ The exponential transpose $\widehat{m_{i}}: Y_{i} \rightarrow\left[Y_{i}, Z_{i}\right]$ is constant：

$$
\forall i \in[1 . . N] . \forall y_{\backslash i}, y_{\backslash i}^{\prime} \in Y_{\backslash i} . \widehat{m_{i}}\left(y_{\backslash i}\right)=\widehat{m_{i}}\left(y_{\backslash i}^{\prime}\right) .
$$

■ The maximal pairwise distance between the i－th outputs when the i－th input is fixed：

$$
\max _{i \in[1 . . N]} \max _{y_{\langle i}, y_{\backslash i}^{\prime} \in Y_{i}} \max _{y_{i} \in Y_{i}} d_{Z_{i}}\left(m_{i}\left(y_{i}, y_{\backslash i}\right), m_{i}\left(y_{i}, y_{\backslash i}^{\prime}\right)\right)
$$

Informativeness：codes encode factors faithfully
■ $m: Y \rightarrow Z$ is left－invertible：
$\exists h: Z \rightarrow Y . h \circ m=\operatorname{id}_{Y}$.
■ Left－inverse approximation：

$$
\min _{h: Z \rightarrow Y} \max _{y \in Y} d_{Y}(h(m(y)), y)
$$

■ $m: Y \rightarrow Z$ is injective：

$$
\forall y, y^{\prime} \in Y .\left(m(y)=m\left(y^{\prime}\right)\right) \rightarrow\left(y=y^{\prime}\right) .
$$

■ Contraction：

$$
\max _{y, y^{\prime} \in Y} \max \left\{d_{Y}\left(y, y^{\prime}\right)-d_{Z}\left(m(y), m\left(y^{\prime}\right)\right), 0\right\} .
$$

Future research directions

■ Can we use other aggregate functions（e．g．，mean，median）？
$■$ Can we optimize these metrics with minimal supervision？

References

Yoshua Bengio，Aaron Courville，and Pascal Vincent．Representation learning：A review and new perspectives．IEEE transactions on
pattern analysis and machine intelligence，35（8）：1798－1828， 2013.
Yivan Zhang and Masashi Sugiyama．A category－theoretical meta－analysis of definitions of disentanglement．In ICML， 2023.

