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Can we measure injectivity?

m In supervised learning, we can use the total cost over a collection of input-output pairs to measure the performance of a function,
which can be considered as a “metric” L : [ X, Y] x [X, Y] — R between functions:

L(f,g) =2, t(f(z),g(z)), (1)
where g is a “ground-truth function” that maps each input x to its target label y. It measures how much two functions f and ¢ are equal.
(f =g9) =V (f(z) = g(z)). (2)

m In representation learning [Bengio et al., 2013], we may want a function to preserve informative factors in data: if two inputs z, and z,
have different factors, x; # x,, then their representations extracted by a function f : X — Z should be different too, f(z;) # f(x,),
which means that the representation extractor f : X — Z should be injective.

m An injective function f : X — Z is left-cancellable:

Vg1,90: W = X. (fogr=fog)— (91 =g) (3)
An injective function f : X — Z has a left-inverse:

dg:Z — X. go f=idy. (4)
Just as we can measure function equality in terms of the total cost, can we measure injectivity, left-cancellability, and left-invertibility?
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Premetric-enriched monoidal category Modularity: a code encodes only one factor

A monoidal category enriched in a category of premetric spaces,
in which there is a premetric dj4 p from object A to object B,

mm:Y — Zisaproduct function m = [, m;;:
Vic [1.N|.Im;;: Y, = Z;.m; 1Y = Z; == p;om = m,;;op,.

describes a collection of premetrics between morphisms that
are compatible with composition and monoidal product.

m Product approximation:

max  min _ max dgz(m;(y), m;;(y;)).

m The composition o combines morphisms in series. i€[l.N] m;;Y(—=Z; yeYy
dipc)(9,9) ®diap(f, f) 2 daclgo f.g of)
m The monoidal product © combines morphisms in parallel. m The exponential transpose m; : Y\; — [V}, Z; is constant:
. /
dia g (f, ) @ die.py(h, h) = diasc pop)(f @ b, [ @ B). Vi € [L.N]. ¥y, y € Yo milyy) = mi(y,).
5 m The maximal pairwise distance between the i-th outputs
/ \—\g /d(m\ when the i-th input is fixed:
RS [
gw e f®h/ Jhax  max e dy (my(yi, i), ma(yi v,))-
\/ /’ ; '\ " Wi y\ze \i 7
AR C d(f@hj@h) B® D
g of — C T — Informativeness: codes encode factors faithfully

gof \*/ mmn:Y — Zisleft-invertible:

h
dh:Z — Y. hom =idy.
m Left-inverse approximation:

Quantale-valued premetric

If the premetrics take value in a quantale (monoidal closed

Joinmax dy(h(m(y), ).

cocartesian thin category), there exist order operations that
behave like logical connectives (e.g., conjunction, implication).

mm:Y — Zisinjective:
Vy,y €Y. (m(y) =m(y)) = (y=19)

(@, =) {L, T} F) (10, 00], =) -

top T true T zero 0 = Contraction:

bottom L false | infinity oo max max{dy(y,y') — dz(m(y), m(y")),0}.

meet A conjunction A maximum max vy €Y

join Vv disjunction Vv minimum min

monoidal product @ conjunction A addition + Future research directions

internal hom —o implication — subtraction — m Can we use other aggregate functions (e.g., mean, median)?

m Can we optimize these metrics with minimal supervision?
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from disentanglement definitions [Zhang and Sugiyama, 2023]!
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