TITLE: Enriching Disentanglement: From Logical Definitions to Quantitative Metrics TL;DR:**Turn Logical Formulas into Loss Functions**

Yivan Zhang^{1, 2} Masashi Sugiyama^{2, 1} ¹The University of Tokyo ²RIKEN AIP

Motivation: measuring properties of functions

A *constant function* is a function that maps all inputs to the same output, but **"***how constant***" is a non-constant function?**

✓a constant function

x non-constant functions

- \blacksquare Intuitively, we can measure how the outputs are distributed over the output space (constancy $= 0$ deviation).
- If we have a real-valued and preferably differentiable metric for the degree of constancy, we can *measure* the constancy of a function and *optimize* it using gradient descent.
- How can we measure properties of functions?

Idea: quantifying logical predicates

- We can derive metrics from the definition of properties.
- The constancy of a function $f : A \rightarrow B$ can be defined by (binary-valued) logical predicates:
- (a) $\exists b \in B$. $\forall a \in A$. $f(a) = b$ or (b) $\forall a, a' \in A$. $f(a) = f(a)$ \blacksquare From these definitions, we can derive their corres
	- (real-valued) quantitative metrics: (a) $\inf_{b \in B} \text{agg}_{a \in A} d(f(a), b)$ or (b) $\text{agg}_{a, a' \in A} d(f(a), f(a'))$

$$
a) = f(a')
$$

(a) how far the outputs are from a central point

 $*$ truncated subtraction: $b \div a := \max\{b - a, 0\}$ ∗∗ e.g., maximum, sum, mean, and mean square

 $q(a) := q_B(a) + q_C(a)$

(b) how far the outputs are from each other

$p(a) := p_B(a) \to p_C(a)$
 $q(a) := q_C(a) - q_B(a)$ (a) quantity (b) conjunction (c) disjunction (d) implication

We can use them as *learning objectives* or *evaluation criteria*. They differ in terms of *computation cost* and *differentiability*.

Background: logic and metric in machine learning

Example 10 Figure 10 Figure 10 Figure 20 Figure 10 Figure 10 total cost $L(f,g) \mathrel{\mathop:}= \sum$ $x\in X$ $\ell(f(x),g(x))$ as a measure of the function equality $(f = g) := \forall x \in X$. $f(x) = g(x)$ between a learning model $f : X \to Y$ and the ground-truth $g : X \to Y$. ■ Can we extend this parallel to *representation learning*?

Zero predicate: $\zeta : [0, \infty] \to {\text{T}, \perp} := x \mapsto (x = 0)$ **Homomorphisms** from metric to logic via ζ : $A \longrightarrow A$ $[0, \infty] \longrightarrow {\top, \bot}$ \overline{q} id_A \overline{p} ζ $[0, \infty]^n \xrightarrow{\zeta^n} {\{\top, \bot\}}^n$ $[0, \infty] \longrightarrow {\top, \bot}$ α β ζ $[0, \infty]^A \xrightarrow{\zeta^A} {\{\top, \bot\}}^A$ $[0, \infty] \longrightarrow {\top, \bot}$ α_A β_A ζ from quantity q from quantitative operation α from aggregator α_A to predicate p to logical operation β to quantifier β_A ■ Subhomomorphisms: replace equality = by implication \rightarrow Truncated subtraction is subhomomorphic to implication. No continuous operation is homomorphic to implication. **Main theorem**: *If the components are (sub)homomorphic, so is the compound:* $q(a) = 0$ equals (implies) $p(a) = T$. **Benefits**: (1) **no failure modes**; (2) **no hyperparameters**; (3) **no stochastic components**; (4) some are **differentiable**.

-
-
-
-

Problem: disentangled representation learning

- No unified logical definition, many evaluation metrics [\[Carbonneau et al., 2022,](#page-0-0) [Zhang and Sugiyama, 2023\]](#page-0-1)
- Unclear what properties these metrics quantify
- Usually non-differentiable and computationally inefficient
- **Unproven if a learning method can truly optimize a metric**

Enrichment: from logic to metric

- $q_{\mathsf{product}}(m) := \inf_{m_{1,1} \in [Y_1,Z_1]}$ **Instantiations**:
	-
-

Theory: (sub)homomorphisms from metric to logic

Logical definitions of disentangled representations

Modularity: reconstruct the product structure

Example :

Definition:

Quantitative metrics of disentangled representations

Metric:

Results:

References

Marc-André Carbonneau, Julian Zaidi, Jonathan Boilard, and Ghyslain Gagnon. Measuring disentanglement: A review of metrics. *IEEE Transactions on Neural Networks and Learning Systems*, 2022. Yivan Zhang and Masashi Sugiyama. A category-theoretical meta-analysis of definitions of disentanglement. In *ICML*, 2023.

$p_{\mathsf{product}}(m) \coloneqq \exists m_{1,1}: Y_1 \to Z_1 \ldotp \exists m_{2,2}: Y_2 \to Z_2 \ldotp m = m_{1,1} \times m_{2,2}$

 $\inf_{m_{2,2}\in [Y_{2},Z_{2}]} \underline{d_{[Y,Z]}}(m,m_{1,1}\times m_{2,2})$

 $\text{mean}_{y_1 \in Y_1} \text{var}_{y_2 \in Y_2} m_1(y_1, y_2) + \text{mean}_{y_2 \in Y_2} \text{var}_{y_1 \in Y_1} m_2(y_1, y_2)$ $\max_{y_1 \in Y_1} \text{diam}_{y_2 \in Y_2} m_1(y_1, y_2) + \max_{y_2 \in Y_2} \text{diam}_{y_1 \in Y_1} m_2(y_1, y_2)$

■ We have derived fine-grained, efficient, and differentiable quantitative metrics for disentangled representations. ■ We can quantify any logically defined properties!

arXiv:**2305.11512** https://**yivan.xyz yivan.xyz**@gmail.com