TITLE: Enriching Disentanglement: From Logical Definitions to Quantitative Metrics TL;DR: Turn Logical Formulas into Loss Functions

Yivan Zhang^{1, 2} Masashi Sugiyama^{2, 1} ²RIKEN AIP ¹The University of Tokyo

Motivation: measuring properties of functions

A constant function is a function that maps all inputs to the same output, but "how constant" is a non-constant function?

✓ a constant function

X non-constant functions

- Intuitively, we can measure how the outputs are distributed over the output space (constancy = 0 deviation).
- If we have a real-valued and preferably differentiable metric for the degree of constancy, we can *measure* the constancy of a function and optimize it using gradient descent.
- How can we measure properties of functions?

Idea: quantifying logical predicates

- We can derive metrics from the definition of properties.
- The constancy of a function $f : A \rightarrow B$ can be defined by (binary-valued) logical predicates:
- (a) $\exists b \in B$. $\forall a \in A$. f(a) = b or (b) $\forall a, a' \in A$. f(a) = bFrom these definitions, we can derive their corres (real-valued) quantitative metrics:

(a) how far the outputs are from a central point

(b) how far the outputs are from each other

We can use them as *learning* objectives or evaluation criteria. They differ in terms of computation cost and differentiability.

Background: logic and metric in machine learning

Even in the supervised learning setting, we can view the total cost $L(f,g) := \sum_{x \in X} \ell(f(x), g(x))$ as a measure of the function equality $(f = g) := \forall x \in X$. f(x) = g(x) between a learning model $f: X \to Y$ and the ground-truth $g: X \to Y$. Can we extend this parallel to representation learning?

$$\frac{a) = f(a')}{\text{sponding}}$$

Problem: disentangled representation learning

- No unified logical definition, many evaluation metrics [Carbonneau et al., 2022, Zhang and Sugiyama, 2023]
- Unclear what properties these metrics quantify
- Usually non-differentiable and computationally inefficient Unproven if a learning method can truly optimize a metric

Enrichment: from logic to metric

Like logic, we can construct metrics compositionally! Logic

Logic	
truth values	$\{ op, ot$
predicate	$A \xrightarrow{p} \{\top$
equality	(a = a)
conjunction	\wedge
disjunction	\bigvee
implication	\rightarrow
universal quantifier	\forall
existential quantifie	r ∃

* truncated subtraction: $b \doteq a := \max\{b - a, 0\}$ ** e.g., maximum, sum, mean, and mean square

(a) quantity

(b) conjunction

Theory: (sub)homomorphisms from metric to logic

- $[0,\infty]^n \xrightarrow{\zeta^n} \{\top,\bot\}^n$ $[0,\infty]^A \xrightarrow{\zeta^{n}} \{\top,\bot\}^A$ $[0,\infty] \xrightarrow{\varsigma} \{\top,\bot\}$ $[0,\infty] \xrightarrow{\zeta} \{\top,\bot\}$ $[0,\infty] \xrightarrow{\zeta} \{\top,\bot\}$ from quantity q from quantitative operation α from aggregator α_A to logical operation β to quantifier β_A to predicate p Truncated subtraction is subhomomorphic to implication. No continuous operation is homomorphic to implication.
- **Zero predicate:** $\zeta : [0, \infty] \to \{\top, \bot\} := x \mapsto (x = 0)$ **Homomorphisms** from metric to logic via ζ : **Subhomomorphisms**: replace equality = by implication \rightarrow
- Main theorem: If the components are (sub)homomorphic, so is the compound: q(a) = 0 equals (implies) $p(a) = \top$.
- Benefits: (1) no failure modes; (2) no hyperparameters; (3) no stochastic components; (4) some are differentiable.

arXiv:2305.11512 https://yivan.xyz yivan.xyz@gmail.com

•	
Metric	
real values	$[0,\infty]$
quantity A	$\mathbf{A} \xrightarrow{q} [0, \infty]$
strict premetric	d(a,a')
addition	+
minimum	min
subtraction*	<u>•</u>
aggregator**	\bigtriangledown
infimum	inf

(c) disjunction

$p(a) := p_B(a) \to p_C(a)$ $q(a) := q_C(a) - q_B(a)$ (d) implication

Logical definitions of disentangled representations

Modularity: reconstruct the product structure

Definition:

Quantitative metrics of disentangled representations

Metric:

- **Instantiations**:

Results:

		Modularity						Informativeness						Existing metrics					
	F	Product approx.		Constancy			Retraction appr		approx.	ox. Contraction		Pair		Info.	Regressor		or		
	F	Rad.	MAD	Var.	Diam.	MPD		ME	MAE	MSE	Max	Mean	Beta ^a	Factor ^b	MIG ^c	$Dis.^d$	$Com.^d$	$Info.^d$	
entanglement >	K	0.44	0.75	0.96	0.19	0.82	✓	0.76	0.96	0.99	0.44	0.78	0.89	0.83	0.18	0.28	0.28	1.00	
rotation 🌙	K	0.22	0.51	0.80	0.05	0.64	\checkmark	1.00	1.00	1.00	1.00	1.00	0.96	0.34	0.17	0.40	0.40	1.00	
duplicate 🏻 🗡	K	0.24	0.43	0.67	0.06	0.56	\checkmark	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.59	1.00	
complement	K	0.12	0.28	0.55	0.01	0.42	\checkmark	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.63	1.00	
misalignment 🌶	K	0.22	0.44	0.74	0.05	0.58	\checkmark	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	
redundancy 🗸	/	1.00	1.00	1.00	1.00	1.00	\checkmark	1.00	1.00	1.00	1.00	1.00	1.00	0.33	1.00	1.00	0.93	1.00	
contraction	/	1.00	1.00	1.00	1.00	1.00	\checkmark	1.00	1.00	1.00	0.18	0.49	1.00	1.00	1.00	1.00	1.00	1.00	
nonlinear 🗸	/	1.00	1.00	1.00	1.00	1.00	\checkmark	0.79	0.93	0.99	0.65	0.95	1.00	1.00	0.88	1.00	1.00	1.00	
constant 🗸	/	1.00	1.00	1.00	1.00	1.00	X	0.42	0.76	0.90	0.18	0.48	0.33	0.33	0.00	0.00	0.00	0.00	
random 🍾	K	0.22	0.48	0.78	0.05	0.61	X	0.42	0.76	0.90	0.22	0.83	0.34	0.33	0.00	0.00	0.00	0.04	

References

Marc-André Carbonneau, Julian Zaidi, Jonathan Boilard, and Ghyslain Gagnon. Measuring disentanglement: A review of metrics IEEE Transactions on Neural Networks and Learning Systems, 2022. Yivan Zhang and Masashi Sugiyama. A category-theoretical meta-analysis of definitions of disentanglement. In ICML, 2023.

$- p_{\text{product}}(m) := \exists m_{1,1} : Y_1 \to Z_1. \ \exists m_{2,2} : Y_2 \to Z_2. \ m = m_{1,1} \times m_{2,2}$

 $\blacklozenge q_{\text{product}}(m) := \inf_{m_{1,1} \in [Y_1, Z_1]} \inf_{m_{2,2} \in [Y_2, Z_2]} d_{[Y, Z]}(m, m_{1,1} \times m_{2,2})$

 $\blacksquare \operatorname{mean}_{y_1 \in Y_1} \operatorname{var}_{y_2 \in Y_2} m_1(y_1, y_2) + \operatorname{mean}_{y_2 \in Y_2} \operatorname{var}_{y_1 \in Y_1} m_2(y_1, y_2)$ $= \max_{y_1 \in Y_1} \operatorname{diam}_{y_2 \in Y_2} m_1(y_1, y_2) + \max_{y_2 \in Y_2} \operatorname{diam}_{y_1 \in Y_1} m_2(y_1, y_2)$

We have derived fine-grained, efficient, and differentiable quantitative metrics for disentangled representations. We can quantify any logically defined properties!