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Motivation: measuring properties of functions

A constant function is a function that maps all inputs to the
same output, but “how constant” is a non-constant function?
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Intuitively, we can measure how the outputs are distributed
over the output space (constancy = 0 deviation).
If we have a real-valued and preferably differentiable metric
for the degree of constancy, we can measure the constancy
of a function and optimize it using gradient descent.
How can we measure properties of functions?

Idea: quantifying logical predicates

We can derive metrics from the definition of properties.
The constancy of a function f : A → B can be defined by
(binary-valued) logical predicates:
(a) ∃b ∈ B. ∀a ∈ A. f (a) = b or (b) ∀a, a′ ∈ A. f (a) = f (a′)
From these definitions, we can derive their corresponding
(real-valued) quantitative metrics:
(a) infb∈B agga∈A d(f (a), b) or (b) agga,a′∈A d(f (a), f (a

′))

(a) how far the outputs are
from a central point

(b) how far the outputs are
from each other

We can use them as learning objectives or evaluation criteria.
They differ in terms of computation cost and differentiability.

Background: logic and metric in machine learning

Even in the supervised learning setting, we can view the
total cost L(f, g) :=

∑
x∈X ℓ(f (x), g(x)) as a measure of the

function equality (f = g) := ∀x ∈ X. f (x) = g(x) between a
learning model f : X → Y and the ground-truth g : X → Y .
Can we extend this parallel to representation learning?

Problem: disentangled representation learning

No unified logical definition, many evaluation metrics
[Carbonneau et al., 2022, Zhang and Sugiyama, 2023]
Unclear what properties these metrics quantify
Usually non-differentiable and computationally inefficient
Unproven if a learning method can truly optimize a metric

Enrichment: from logic to metric

Like logic, we can construct metrics compositionally!
Logic Metric
truth values {⊤,⊥} real values [0,∞]

predicate A
p−→ {⊤,⊥} quantity A

q−→ [0,∞]
equality (a = a′) strict premetric d(a, a′)
conjunction ∧ addition +
disjunction ∨ minimum min
implication → subtraction∗

´

universal quantifier ∀ aggregator∗∗ ▽
existential quantifier ∃ infimum inf
∗ truncated subtraction: b ´ a := max{b− a, 0}
∗∗ e.g., maximum, sum, mean, and mean square

(a) quantity (b) conjunction (c) disjunction (d) implication

Theory: (sub)homomorphisms from metric to logic

Zero predicate: ζ : [0,∞] → {⊤,⊥} := x 7→ (x = 0)

Homomorphisms from metric to logic via ζ :
A A
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from quantity q from quantitative operation α from aggregator αA

to predicate p to logical operation β to quantifier βA
Subhomomorphisms: replace equality = by implication →
Truncated subtraction is subhomomorphic to implication.
No continuous operation is homomorphic to implication.
Main theorem: If the components are (sub)homomorphic,
so is the compound: q(a) = 0 equals (implies) p(a) = ⊤.
Benefits: (1) no failure modes; (2) no hyperparameters;
(3) no stochastic components; (4) some are differentiable.

Logical definitions of disentangled representations

Modularity: reconstruct the product structure
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factors observations codes

Ycolor × Yshape X Zcolor × Zshape
g f

m := f ◦ g = mcolor ×mshapeExample:
(■,⃝) 7→ (2, 4)

(■,△) 7→ (2, 6)

(■,⃝) 7→ (6, 4)

(■,△) 7→ (6, 6)

=

{
■ 7→ 2

■ 7→ 6︸ ︷︷ ︸
mcolor

×
{
⃝ 7→ 4

△ 7→ 6︸ ︷︷ ︸
mshape︸ ︷︷ ︸

✓a product function


(■,⃝) 7→ (1, 2)

(■,△) 7→ (3, 4)

(■,⃝) 7→ (5, 6)

(■,△) 7→ (7, 8)︸ ︷︷ ︸
✗ not a product function

Definition:
pproduct(m) := ∃m1,1 : Y1 → Z1.∃m2,2 : Y2 → Z2.m = m1,1 ×m2,2

Quantitative metrics of disentangled representations

Metric:
qproduct(m) := infm1,1∈[Y1,Z1]

infm2,2∈[Y2,Z2]
d[Y,Z](m,m1,1 ×m2,2)

Instantiations:
meany1∈Y1 vary2∈Y2 m1(y1, y2) + meany2∈Y2 vary1∈Y1 m2(y1, y2)

maxy1∈Y1 diamy2∈Y2 m1(y1, y2) + maxy2∈Y2 diamy1∈Y1 m2(y1, y2)

Results:
We have derived fine-grained, efficient, and differentiable
quantitative metrics for disentangled representations.
We can quantify any logically defined properties!

Modularity Informativeness Existing metrics
Product approx. Constancy Retraction approx. Contraction Pair Info. Regressor
Rad. MAD Var. Diam. MPD ME MAE MSE Max Mean Betaa Factorb MIGc Dis.d Com.d Info.d

entanglement ✗ 0.44 0.75 0.96 0.19 0.82 ✓ 0.76 0.96 0.99 0.44 0.78 0.89 0.83 0.18 0.28 0.28 1.00
rotation ✗ 0.22 0.51 0.80 0.05 0.64 ✓ 1.00 1.00 1.00 1.00 1.00 0.96 0.34 0.17 0.40 0.40 1.00
duplicate ✗ 0.24 0.43 0.67 0.06 0.56 ✓ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.59 1.00
complement ✗ 0.12 0.28 0.55 0.01 0.42 ✓ 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.63 1.00
misalignment ✗ 0.22 0.44 0.74 0.05 0.58 ✓ 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00
redundancy ✓ 1.00 1.00 1.00 1.00 1.00 ✓ 1.00 1.00 1.00 1.00 1.00 1.00 0.33 1.00 1.00 0.93 1.00
contraction ✓ 1.00 1.00 1.00 1.00 1.00 ✓ 1.00 1.00 1.00 0.18 0.49 1.00 1.00 1.00 1.00 1.00 1.00
nonlinear ✓ 1.00 1.00 1.00 1.00 1.00 ✓ 0.79 0.93 0.99 0.65 0.95 1.00 1.00 0.88 1.00 1.00 1.00
constant ✓ 1.00 1.00 1.00 1.00 1.00 ✗ 0.42 0.76 0.90 0.18 0.48 0.33 0.33 0.00 0.00 0.00 0.00
random ✗ 0.22 0.48 0.78 0.05 0.61 ✗ 0.42 0.76 0.90 0.22 0.83 0.34 0.33 0.00 0.00 0.00 0.04
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