tirte：A Category－theoretical Meta－analysis of Definitions of Disentanglement Disentanglement is a Product Morphism．

Yivan Zhang ${ }^{1,2}$ Masashi Sugiyama ${ }^{2,1}$
${ }^{1}$ The University of Tokyo ${ }^{2}$ RIKEN AIP

What is disentanglement？

Colorful and tasty candies！
■ We only need to taste a handful of candies to find out the relationship between their color，shape，and taste．We can use this knowledge to predict the taste of other candies．
Can a neural network do this？

Algebraic definitions

Group actions capture the transformations and symmetries ［Cohen and Welling，2014］．A disentangled encoder should be equivariant to group actions of a direct product of groups ［Higgins et al．，2018］．

Statistical definitions

Probabilistic models capture the relations and uncertainty of variables．A disentangled encoder should satisfy certain statistical independence conditions［Higgins et al．，2017， Chen et al．，2018，Suter et al．，2019］．

A unified definition？

■ What do direct product and independent random variables have in common？
■ Can we define disentanglement using only functions？ ■ What are the defining properties of disentanglement？

Category theory provides a suitable abstraction to identify， formalize，and organize common patterns，mathematically rigorous diagrammatic reasoning，and generality to tackle increasingly complex machine learning problems．

（a）A commutative diagram of a morphism $C \rightarrow A \times B$ to a cartesian product

C
（b）A string diagram of a morphism $C \rightarrow A \otimes B$ to a monoidal product

Product：core of disentanglement
Set：category of sets（objects）and functions（morphisms） Let＇s consider Y ：factors，X ：observations，and Z ：codes．

Modularity：a code encodes only one factor
Modularity：$m: Y \rightarrow Z:=f \circ g$ is a product of morphisms．

\square When is $A \times B \rightarrow C$ just $A \rightarrow C$ ？
■ We can use exponential objects and pullbacks．

Informativeness：codes encode factors faithfully

Informativeness：$m: Y \rightarrow Z$ is a split monomorphism．
$\square m: Y \rightarrow Z$ has a retraction $h: Z \rightarrow Y$ ，s．t．$h \circ m=\operatorname{id}_{Y}$ ．
$■$ We should disentangle modularity and informativeness！

東京大学
THE UNIVERSITY OF TOKYO

Equivariant maps

［S，Set］：category of functors and natural transformations

－Algebra action＝functor from a single－object category
－Equivariant map＝natural transformation

equivariance \rightsquigarrow naturality

Stochastic maps

Stoch：category of measurable spaces and stochastic maps

■ Joint distributions are monoidal products，not cartesian．
■ We can use copy \＆delete in a Markov category［Fritz，2020］．
probability \＆statistics \rightsquigarrow Markov category

Next steps？

■ Disentanglement metrics（enriched category theory？） ［Zhang and Sugiyama，2023］
－Analyses on functor categories and Markov categories
－More structures and operations beyond product！

References

Ricky To Chen，Xuechen Li，Roger B Grosse，and David K Duvenaud．Isolating sources of disentanglement in variational
autoencoders．In NeurfPS，2018． Taco Cohen and Max Welling．Learning the irreducible renresentations of commutative lie groups．In ICML． 2014
 in Mathematics，2020． lina Higgins，Loic Mathey，Aka Pal，Christopher Burgess，Xavier Glorot，Matthew Botvinick，Shakir Mohamed，and Alexander
Lerchner．beta－VAE：Learning basic visual concepts with a constrained variational framework．In ICLR，2017． lina Higgins，David Amoss，David Pfau，sebastien Racaniere，Loic Mathey，Danilo Rezende，and Alexander Lerchner．Towards

． Yivan Zhang and Masashi Sugivama．Enriching disentanglement：Definitions to metrics．arXiv：2305．11512，2023．

