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What is disentanglement?

?
(a) Composition

sweet

sour

(b) Supervision

taste?

(c) Generalization

Colorful and tasty candies!
We only need to taste a handful of candies to find out the
relationship between their color, shape, and taste. We can
use this knowledge to predict the taste of other candies.
Can a neural network do this?

Algebraic definitions

Group actions capture the transformations and symmetries
[Cohen and Welling, 2014]. A disentangled encoder should be
equivariant to group actions of a direct product of groups
[Higgins et al., 2018].

Statistical definitions
Probabilistic models capture the relations and uncertainty of
variables. A disentangled encoder should satisfy certain
statistical independence conditions [Higgins et al., 2017,
Chen et al., 2018, Suter et al., 2019].

A unified definition?
What do direct product and independent random variables
have in common?
Can we define disentanglement using only functions?
What are the defining properties of disentanglement?

Category theory provides a suitable abstraction to identify,
formalize, and organize common patterns, mathematically
rigorous diagrammatic reasoning, and generality to tackle
increasingly complex machine learning problems.
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(a) A commutative diagram of
a morphism C → A×B
to a cartesian product

C

A B

f

(b) A string diagram of
a morphism C → A⊗B
to a monoidal product

Product: core of disentanglement

Set: category of sets (objects) and functions (morphisms)
Let’s consider Y : factors, X : observations, and Z: codes.

Disentanglement: f : X → Z is a morphism to a product.
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A function C → A×B
to a Cartesian product
is just a pair of functions
C → A and C → B.

A function A×B → C
from a Cartesian product
can depend on both inputs.
Can it depend on only one?

Modularity: a code encodes only one factor

Modularity: m : Y → Z := f ◦ g is a product of morphisms.
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When is A×B → C just A → C?
We can use exponential objects and pullbacks.

Informativeness: codes encode factors faithfully

Informativeness: m : Y → Z is a split monomorphism.

m : Y → Z has a retraction h : Z → Y , s.t. h ◦m = idY .
We should disentangle modularity and informativeness!

Equivariant maps

[S,Set]: category of functors and natural transformations
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Algebra action = functor from a single-object category
Equivariant map = natural transformation

equivariance⇝ naturality

Stochastic maps

Stoch: category of measurable spaces and stochastic maps
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Joint distributions are monoidal products, not cartesian.
We can use copy & delete in a Markov category [Fritz, 2020].

probability & statistics⇝Markov category

Next steps?

Disentanglement metrics (enriched category theory?)
[Zhang and Sugiyama, 2023]
Analyses on functor categories and Markov categories
More structures and operations beyond product!
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