
Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization
Yivan Zhang1, 2 Gang Niu2 Masashi Sugiyama2, 1

1The University of Tokyo 2RIKEN AIP

Introduction
Problem

Noise transition matrix is important in learning from noisy labels.
However, it is usually unavailable or hard to obtain.
Existing methods often depend on unreliable noisy class-posterior estimation.

Contribution
We characterized the class-conditional label corruption process.
We proposed a conceptually novel method for transition matrix estimation.

Methodology
Make probabilities more distinguishable: total variation regularization
Capture uncertainties during training: Dirichlet posterior update

Learning from Noisy Labels
Notation
X : input features
Y : true labels
Ỹ : noisy labels

Assumption

X Y Ỹ

Class-Conditional Noise (CCN) assumes that the noisy label Ỹ is independent of the input
feature X given the true label Y : p(Ỹ |Y,X) = p(Ỹ |Y ).

Noise Transition Matrix Tij = p(Ỹ = j|Y = i) p(Ỹ = 1|X)
...

p(Ỹ = K|X)

 =

 p(Ỹ = 1|Y = 1) . . . p(Ỹ = 1|Y = K)
... . . . ...

p(Ỹ = K|Y = 1) . . . p(Ỹ = K|Y = K)


 p(Y = 1|X)

...
p(Y = K|X)


⇓

p(Ỹ |X) = TTp(Y |X)

Noise Transition Matrix
Clean Symmetric Pairwise General

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

 0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

 0.7 0.3 0.0
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 0.7 0.2 0.1
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0.1 0.2 0.7


Class-conditional label corruption maps the probability simplex ∆K−1 to a convex hull
Conv(T ) of the rows of the noise transition matrix T .

Outer black triangle: probability simplex ∆2

Inner colored triangle: convex hull Conv(T )

Good news: if the ground-truth noise transition matrix T is known, p(Y |X) is identifiable
based on observations of p(Ỹ |X) [Patrini et al., 2017].

Problem
Noise transition matrix is usually not available [Patrini et al., 2017].

Solution
Learn the noise transition matrix from only noisy labels.

Anchor Points
An instance x is called an anchor point for class i if p(Y = i|X = x) = 1.
Based on anchor points, we can estimate p(Ỹ |X) to obtain an estimate of T .

p(Ỹ |X = x) = TTp(Y |X = x) = Ti

Problem
Anchor points are hard to obtain [Xia et al., 2019, Yao et al., 2020].

Solution
Do not rely on a separate set of anchor points.
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Problem
The estimation of the noisy class-posterior could be unreliable due to the overconfidence of
deep neural networks [Guo et al., 2017, Hein et al., 2019].

Solution
Do not estimate the noisy class-posterior directly using neural networks.

Motivation
Transition Matrix as a Contraction Mapping

The mapping ∆ → Conv(U ) defined by p 7→ UTp is a
contraction mapping over the simplex ∆ relative to the
total variation distance [Del Moral et al., 2003]:

∀U ∈ T ,∀p, q ∈ ∆,

dTV(UTp,UTq) ≤ dTV(p, q)

Clean class-posteriors are always more distinguishable
from each other than noisy class-posteriors.

Transition Matrix Estimation

In addition to the gradient information, the confusion
matrix can be used to estimate the transition matrix.

To capture uncertainties during training, we could use
Dirichlet distributions to accumulate information of
confusion matrices, which leads us to a derivative-free
approach for transition matrix estimation.

Proposed Method

Our model has two modules:
(a) a neural network for predicting p(Y |X)

(b) a Dirichlet posterior for the noise transition matrix T

The learning objective also contains two parts:
(i) the usual cross-entropy loss for classification from noisy labels
(ii) a total variation regularization term for the predicted probability

Implementation
Total Variation Regularization
We sample a fixed number of pairs to reduce the additional computational cost.

dTV(p, q) :=
1

2
‖p− q‖1

R(W ) := E
X1∼p(X)

E
X2∼p(X)

[dTV(p1,p2)]

where pi := p(Y |Xi;W ) i = 1, 2

p = model(x) # probability [batch_size , num_classes]
idx_1 , idx_2 = randint(0, batch_size , (2, num_pairs ))
tv = 0.5 * l1_norm(p[idx_1] - p[idx_2], dim =1). mean()

Dirichlet Posterior Update
Inspired by the closed-form posterior update rule for the Dirichlet-multinomial conjugate, we
update the concentration parameters A during training using the confusion matrix C ,
where (β1, β2) are fixed hyperparameters.

A(posterior) = A(prior) + C(observation)

A← β1A + β2C

y = Categorical(p). sample () # predicted labels
C = confusion_matrix(y, y_) # confusion matrix
A = beta_1 * A + beta_2 * C # update

Optimization
For each batch of data, we sample a transition matrix from the Dirichlet posterior.

Ti ∼ Dirichlet(Ai) (i = 1, . . . , K)

L0(W,T ) := E
X∼p(X)

[
DKL

(
p(Ỹ |X)

∥∥∥ TTp(Y |X ;W )
)]

L(W,T ) := L0(W,T )− γR(W )

T = Dirichlet(A). sample () # transition matrix
loss = cross_entropy(p @ T, y_) - gamma * tv

Experiments
Improved classification performance, measured by accuracy.

(a) Clean (b) Symm. (c) Pair (d) Pair2 (e) Trid. (f) Rand.

CI
FA

R1
00

MAE 11.23(1.02) 7.89(0.67) 6.94(1.11) 6.60(0.74) 7.45(0.55) 7.15(0.98)
CCE 70.58(0.29) 42.94(0.47) 44.00(0.71) 41.37(0.27) 46.55(0.54) 42.41(0.48)
GCE 57.10(0.85) 48.66(0.58) 45.27(0.85) 43.67(0.94) 50.98(0.33) 48.66(0.63)

Forward 70.58(0.28) 44.32(0.64) 44.17(0.57) 42.07(0.55) 47.48(0.40) 43.15(0.53)
T-Revision 70.47(0.26) 46.52(0.57) 44.08(0.42) 42.01(0.52) 47.59(0.60) 45.33(0.40)
Dual-T 70.56(0.28) 55.92(0.60) 46.22(0.72) 44.74(0.65) 61.68(0.51) 57.92(0.50)
TVG 70.02(0.30) 57.33(0.42) 45.68(0.85) 44.38(0.72) 54.23(0.53) 59.85(0.61)
TVD 69.93(0.21) 52.54(0.45) 56.02(0.82) 49.18(0.53) 62.45(0.44) 53.95(0.47)

Improved transition matrix estimation, measured by average total variation.

(a) Clean (b) Symm. (c) Pair (d) Pair2 (e) Trid. (f) Rand.

CI
FA

R-
10

0 Forward 0.00(0.00) 48.62(0.11) 39.81(0.03) 43.57(0.04) 40.92(0.07) 49.06(0.10)
T-Revision 0.46(0.05) 31.58(0.46) 39.45(0.03) 42.77(0.06) 40.01(0.09) 39.49(0.26)
Dual-T 3.10(0.08) 17.10(0.18) 33.26(0.20) 33.79(0.26) 23.56(0.43) 22.59(0.23)
TVG 1.59(0.02) 13.11(0.10) 37.79(0.30) 38.83(0.34) 30.80(0.51) 16.47(0.18)
TVD 21.98(0.11) 26.46(0.15) 29.47(0.26) 31.34(0.30) 23.86(0.22) 35.37(0.30)
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